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OPTIMIZATION OF ACOUSTIC SOURCE STRENGTH IN THE PROBLEMS OF

ACTIVE NOISE CONTROL*

J. LONCARIC? AND S. V. TSYNKOV$

Abstract. We consider a problem of eliminating the unwanted time-harmonic noise on a predetermined

region of interest. The desired objective is achieved by active means, i.e., by introducing additional sources

of sound called control sources, that generate the appropriate annihilating acoustic signal (anti-sound).

A general solution for the control sources has been obtained previously in both continuous and discrete

formulation of the problem. In the current paper, we focus on optimizing the overall absolute acoustic

source strength of the control sources. Mathematically, this amounts to the minimization of multi-variable

complex-valued functions in the sense of L1 with conical constraints, which are only "marginally" convex.

The corresponding numerical optimization problem appears very challenging even for the most sophisticated

state-of-the-art methodologies, and even when the dimension of the grid is small, and the waves are long.

Our central result is that the global L_-optimal solution can, in fact, be obtained without solving the

numerical optimization problem. This solution is given by a special layer of monopole sources on the

perimeter of the protected region. We provide a rigorous proof of the global L1 minimality for both continuous

and discrete optimization problems in the one-dimensional case. We also provide numerical evidence that

corroborates our result in the two-dimensional case, when the protected domain is a cylinder. Even though

we cannot fully justify it, we believe that the same result holds in the general case, i.e., for multi-dimensional

settings and domains of arbitrary shape. We formulate it as a conjecture at the end of the paper.

Key words, noise cancellation, control sources, minimization of amplitude, surface monopoles

Subject classification. Applied and Numerical Mathematics

1. Introduction. The area of active control of sound has a rich history of development, both as a

chapter of theoretical acoustics, and in the perspective of many different applications. Any attempt to

adequately overview this extensive area in the framework of a focused research publication would obviously

be deficient. As such, we simply refer the reader to monographs [3, 5, 9] that, among other things, contain a

detailed survey of the literature.

The formulation of the problem that we use in the current paper has been introduced and studied in

our previous work [7]; here, we analyze this formulation from the standpoint of optimization. Let f_ be a

given domain, f_ C Rn, where the space dimension n = 2 or n = 3 (these two cases are most interesting for

applications). The domain ft can be either bounded or unbounded; for the reason of simplicity only we will
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further assume that ft is bounded. Let F be the boundary of f_: F = 0fL Both on f_ and on its (unbounded)

complement f_l = I_'_\f_ we consider the time-harmonic acoustic field u = u(x), x C N'_, governed by the

non-homogeneous Helmholtz equation:

Lu - Au + k2u = f. (1.1)

Equation (1.1) is subject to the Sommerfeld radiation boundary conditions at infinity, which for n = 2 are

formulated as

( )' Olx[ +iku(x)=o Ix ] 1/2 , as Ix ] ----+ oc, (1.2a)

and for n = 3 as

0_(x)
u(x) = o (Ixl-1), 01x_ +iku(x) = o (Ix1-1) as Ixl _ _. (1.2b)

The Sommerfeld boundary conditions specify the direction of wave propagation, and distinguish between

the incoming and outgoing waves at infinity by prescribing the outgoing direction only; they guarantee the

unique solvability of the Helmholtz equation (1.1) for any compactly supported right-hand side f = f(x).

We denote supp f = {xlf(x ) ¢ 0}.

The source terms f = f(x) in equation (1.1) can be located on both _ and its complement f_l = R_\f_;

to emphasize the distinction, we denote

f = f+ + f-, (1.3)

where the sources f+ are interior, supp f+ C f_, and the sources f are exterior, supp f C [_1, with respect

to fL Accordingly, the overall acoustic field u = u(x) can be represented as the sum of two components:

u=u ++u , (1.4)

where

Lu + = f+, (1.5a)

Lu = f . (1.5b)

Note, both u+ = u+(x) and u- = u-(x) are defined on the entire Rn, the superscripts "+" and "-" refer

to the sources that drive each of the field components rather than to the domains of these components. The

setup described above is schematically shown in Figure 1.1.

Hereafter, we will call the component u + of (1.4), (1.5a) sound, or "friendly" part of the total acoustic

field; the component u of (1.4), (1.5b) will accordingly be called noise, or "adverse" part of the total acoustic

field. In the formulation that we are presenting, f_ will be a (predetermined) region of space to be shielded.

This means that we would like to eliminate the noise inside f/ while leaving the sound component there

unaltered. In the mathematical framework that we have adopted, the component u of the total acoustic

field, i.e., the response to the adverse sources f (see (1.3), (1.4), (1.5)), will have to be cancelled on f_,

whereas the component u +, i.e., the response to the friendly sources f+, will have to be left unaffected on

fk A physically more involved but conceptually easy to understand example that can be given to illustrate
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Fie. 1.1. Geometric setup.

the foregoing idea of shielding, is that inside the passenger compartment of an aircraft we would like to

eliminate the noise coming from the propulsion system located outside the fuselage while not interfering

with the ability of the passengers to listen to the inflight entertainment programs or to converse.

The concept of active noise control that we will be discussing implies that the component u- is to be

suppressed on _ by introducing additional sources of sound g = g(x) exterior with respect to f_, suppg C _1,

so that the total acoustic field _ = _(x) be now governed by the equation (cf. formulae (1.1), (1.3))

L_=f++f +g,

and coincide with only the friendly component u + on the domain _:

(1.6)

.e_ = u+ .e_" (1.7)

The new sources g = g(x) of (1.6), see Figure 1.1, will hereafter be referred to as the control sources

or simply controls. An obvious solution for these control sources is g = -f . This solution, however, is

excessively expensive. One one hand, the excessiveness comes from the information-type considerations, as

the solution g = -f- requires explicit and detailed knowledge of the structure and location of the sources

f . As shown in [7], this knowledge is, in fact, superfuous. On the other hand, the implementation of the

solution g = -f may encounter most serious technical difficulties. In the previous example, it is obviously

not feasible to directly counter the actual noise sources, which are aircraft propellers or turbofan jet engines

located on, or underneath, the wings. Therefore, other solutions of the foregoing noise control problem,



besidesthemostobviousone,maybepreferablefromboththetheoreticalandpracticalstandpoint.The
generalsolutionforthecontrolsourcesg was obtained in our previous work [7], and we describe it in the

next Section 2.

Before proceeding, let us only note that in the current paper we focus on the case of the standard

constant-coefficient Helmholtz equation (1.1), which governs the acoustic field and is valid throughout the

entire space I_". This allows us to make the forthcoming analysis most straightforward. As a matter of

fact, other, more complex, cases that involve variable coefficients and, maybe, nonlinearities in the governing

equations over some regions, as well as different types of far-field behavior, discontinuities in the material

properties, etc., can be considered as well. Approaches to obtaining solutions for active controls in these cases

are outlined in our previous paper [7] for the continuous formulation of the problem, and in the monograph

by Ryaben'kii [13, Part VIII] for the discrete formulation of the problem.

The material in the rest of the paper is organized as follows. In Section 2, we introduce the control

sources for the continuous formulation of the problem. In Section 3, we obtain the control sources in the

discrete formulation of the problem, i.e., on the grid. In Section 4, we discuss minimization of the overall

acoustic source strength of active controls that we have constructed, which mathematically amounts to the

optimization in the sense of L1. We present a convincing two-dimensional numerical evidence, as well as a

rigorous one-dimensional proof, of global L1 optimality of a particular layer of monopole sources concentrated

on the perimeter of the protected region. We believe that the combination of computations in two space

dimensions and general proof in one space dimension cannot be a mere coincidence. As such, even though

we cannot flflly justify it, we formulate the corresponding general result on global L1 optimality of surface

monopoles as a conjecture in the concluding Section 5. It basically implies that the aforementioned L1

optimization problem can be solved without using any numerical optimization techniques.

2. Continuous Control Sources.

2.1. General Solution. As demonstrated in [7], the general solution for the control sources g = g(x)

is given by the following formula (ftl = 1I{'_\ft):

g(x) -----Lw _c_,' (2.1)

where w -- w(x), x E _tl, is a special auxiliary function-parameter that parameterizes the family of controls

(2.1). The requirements that the function w(x) must meet are, in fact, relatively "loose." At infinity, it has

to satisfy the Sommerfeld boundary conditions (1.2a) or (1.2b). At the interface F, the function w and its

normal derivative have to coincide with the corresponding quantities that pertain to the total acoustic field

u given by formula (1.4): 1

wr= r' 0_nr Ou r (2.2)

Other than that, the function w(x) used in (2.1) is arbitrary, and consequently formula (2.1) defines a large

family of control sources, which, as will be seen in Section 4, provides ample room for optimization. To make

the discussion in the current paper self-contained, we briefly outline below the justification for formula (2.1)

as general solution for controls, while referring the reader to [7] for further detail.

1In practice, the quantities u and ou on F can be measured and supplied to the control system as the input data.



IntroducingthefundamentalsolutionG = G(x) of the Helmholtz operator L of (1.1) for n = 2:

a(x) = -±H(2)(klxl), (2.3a)
4i 0

where H(o2)(z) = Jo(z) -iYo(z) is the Hankel function of the second kind, and for n = 3:

e-ikl_l

V(x) - 4_lx I , (2.3b)

we can obviously represent the sound portion u+ -- u + (x) of the overall acoustic field that satisfies equation

(1.ba) everywhere on ]R_ as follows:

u+(x) = _ G(x - y)f+(y)dy = _ G(x - y)Lu+(y)dy, x • _'_. (2.4)

Consequently, applying the classical Green's formula (see, e.g., [16] or [22]) to the function u + = u+(x) on

_, we have:

(u+ CgG\OnOU+G) dSy -- O'Oft x •Q, (2.5)

where integrals in (2.5) are, again, convolutions. Similarly, applying the same Green's formula on ft to

u- = u-(x) and using (2.5), we obtain:

_nn On ] dsy = u_ n On G dsy x • Ft. (2.6)

Therefore, from (2.6) we can conclude that the desired annihilating acoustic signal v -- v(x) that cancels

out the unwanted noise on ft can be obtained as

so that for x • ft we indeed have

On ] dsy,
(2.7)

+ =

To actually implement the annihilating signal v of (2.7), we introduce the auxiliary function w = w(x)

on _ that satisfies the aforementioned conditions at the interface F and at infinity, and apply the Green's

formula to w, which yields:

w(x) - GLwdy = W_n On / dsu, x • ft. (2.8)

As w(x) satisfies the Sommerfeld conditions (1.2a) or (1.25), we obviously have w(x) = fRn GLwdy, x • I_'_,

which, along with formulae (2.2) and (2.7), allows us to transform equality (2.8) to

v(x) = - f GLwdy. (2.9)
J_2 1

Equation (2.9) implies that for any w = w(x) chosen as described above, formula (2.1) describes an appro-

priate control function.



Conversely,assumethat g = g(x), suppg C [_1, i8 a control field such that the solution g = g(x)

of equation (1.6) subject to the Sommerfeld conditions (1.2a) or (1.2b) satisfies equality (1.7). Then, by

choosing w = w(x), x E R '_, as the solution to the nonhomogeneous equation

-Lw = g - f+,

subject to the corresponding Sommerfeld condition, (1.2a) or (1.2b), one can represent g in the form (2.1),

see [7]. Altogether we obtain that formula (2.1) describes the general solution for controls. In other words,

for any w (x), formula (2.1) provides an appropriate control field g(x), and any appropriate control field g (x)

can be represented in the form (2.1) with some particular choice of w(x).

Let us emphasize several important properties of controls (2.1). First of all, from the foregoing derivation

we can see that to obtain these controls one needs no knowledge of the actual exterior sources of noise f .

In other words, neither their location, nor structure, nor strength are required. All one needs to know is

u and ou on the perimeter F of the protected region fL As has been mentioned, in a practical setting

Ulr and our can be interpreted as measurable quantities that are supplied to the control system as the

input data. Moreover, these measurable quantities refer to the overall acoustic field u, rather than only to

its unwanted component u-. In other words, the methodology can automatically distinguish between the

signals coming from the exterior and interior sources, and can tune the controls so that they cancel only

the unwanted exterior signal. This capability is extremely important as in many applications the overall

acoustic field always contains a component that needs to be suppressed along with the part that needs to

be left intact. Alternatively, one can say that the control sources (2.1) are insensitive to the interior sound

u+(x). Indeed, given a function w(x) that satisfies interface conditions (2.2) and the radiation boundary

conditions at infinity, we can take instead "&(x) = w(x) -u+(x); this new function will satisfy the interface

conditions (2.2) with u replaced by u and the same Sommerfeld conditions at infinity. Most important,

the control sources generated by _(x) will be the exact same control sources as those generated by w(x)

because L_(x) = L[w(x) - u+(x)] = Lw(x) for x • fh.

Let us also note that in a more general framework, formula (2.9) (with (2.2) taken into account) can

be interpreted as a particular case of the generalized potential of Calderon's type with the vector density

-- ('a, Ou F"_) This more general framework allows us to analyze more complex formulations of the active

noise control problem, see [7], such as those that involve variations in material properties and alternative

types of far-field behavior of the solution. We refer the reader to the original work by Calderon [2] and

Seeley [14], as well as to the monograph by Ryaben'kii [13], for the general concepts related to Calderon's

potentials and associated pseudodifferential boundary projection operators. As concerns the aforementioned

more advanced formulations of the noise control problem, the key result is basically the same as above.

The general solution for control sources is still given by formula (2.1), where the auxiliary function w(x)

should still satisfy the interface conditions (2.2) and the problem-specific far-field boundary conditions (in

case they differ from the previously mentioned Sommerfeld conditions). The operator L in formula (2.1) will,

however, no longer be the constant-coefficient Helmholtz operator of (1.1), it will rather be the problem-

specific variable-coefficients operator that accounts for the particular variations in material properties, etc.

As, however, formula (2.1) for controls does not change (see [7]), we immediately conclude that we, in fact,

do not need to know the operator L on fL In other words, for obtaining the control sources we do not need

to know the material properties of the sound-conducting medium inside the protected region. This result,



see[7],whichfirst seemscounterintuitive,has,in fact,a straightforwardphysicalexplanation.Oneonly
needstorealizethatthenoisewewantto suppress,andtheoutputofcontrolsthatissupposedtoannihilate
thisnoise,propagateacrossoneandthesamemedium,andwedonotneedto knowwhatthismediumis
(underonlysomerelativelynon-restrictivelimitations,see[7]). It isalsointerestingto mentionthatthe
aforementionedCalderon'sboundaryprojectionoperatorsessentiallyrenderthedecompositionofthewave
fieldu(x) on the boundary F into its incoming and outgoing component with respect to the domain f_,

see [7]. Subsequently, the controls (2.1) can be interpreted as either sources cancelling the incoming wave

field for the domain to be shielded, i.e., ft, or alternatively, as sources cancelling the outgoing wave field for

the domain complementary to the one to be shielded, i.e., fit = R_\ft. The latter interpretation is often

more versatile, see [7].

Another important thing to notice is that the control sources g(x) of (2.1) are defined, generally speaking,

on the entire complementary domain fti = ]Rn \ft. For the analysis of specific problems, especially when

the protected region ft is bounded and the complementary region f_l is unbounded, as in Figure 1.1, it

may be convenient to consider compactly supported control sources, i.e., the control sources concentrated

in the vicinity of the interface P. To obtain such controls, one needs to narrow down the class of functions

w(x) used in formula (2.1). Namely, instead of considering arbitrary w(x) subject only to constraints (2.2)

and Sommerfeld boundary conditions at infinity, one needs to consider w(x) that become a solution to the

homogeneous Helmholtz equation everywhere outside some larger domain that fully contains the protected

region fL In so doing, the area outside ft that supports the controls g(x) of (2.1) will stretch from F to the

outer boundary of the aforementioned larger domain, and may basically look as a curvilinear strip adjacent

to F from the exterior side. This strip may, in principle, be made as narrow as desired and may eventually

shrink completely thus reducing only to the interface F itself. As will be seen, the sources g(x) supported

only on the perimeter F, represent an important class of active controls. Such distributions g(x) include

monopole and dipole layers as special cases, which are idealizations of pulsating or vibrating membranes.

2.2. Artificial Boundary Conditions and Compactly Supported Controls. To actually obtain

compactly supported controls g(x) in a particular setting, it is often convenient to use the methodology

known as artificial boundary conditions (see the review paper [17]) for the selection of the appropriate

function w(x) in formula (2.1). Assume that w(x) satisfies the homogeneous Helmholtz equation Lw = 0

outside some outer artificial boundary, which is a closed surface (curve) with the interior that fully contains

ft. In Figure 1.1, we schematically represent this outer boundary as a sphere (circle) of radius R. It turns out

that one can equivalently replace the homogeneous equation Lw = 0 along with the Sommerfeld boundary

conditions at infinity by the special artificial boundary conditions (ABCs) at the outer boundary. For the

outer boundary of a general shape, this can be done most efficiently using the same apparatus of Calderon's

pseudodifferential boundary projection operators, see [13, 17], that has been mentioned before. For the

particular case of a regular spherical or circular outer boundary, see Figure 1.1, which is convenient because

of the simplicity of the forthcoming analysis, the ABCs can be constructed as follows.

We will use spherical coordinates (p,O,¢) in I_'_, n = 3, and assume that Lw = 0 for Ixl - p _> R,

see Figure 1.1. In addition, we will assume that w(x) satisfies the Sommerfeld boundary condition (1.2b).

Expanding w(x) with respect to spherical functions Yl m, l = 0, 1, 2,..., m = 0, +1,... , +l, and separating

the variables in the differential operator L, we arrive at the following collection of the second-order ordinary



differentialequations

d2@trndp2 + 2 d@tm [+k2 l(/+l)]p dp p2 @l,_ = O, (2.10)

p_>R, I=0, i,2,..., m=0,+l,...,+l,

for the unknown radial modes @Ira- These modes are also supposed to satisfy boundary conditions at infinity

_)lm(P) = 0 (p 1) d_21rn(P--)+ ik@tm(p) = o (p 1), as p --+ co, (2.11)
' dp

which immediately follow from the Sommerfeld condition (1.2b). For any given pair (I, m) the general

solution of equation (2.10) is given by

@l,, = cl H_l)/:(kp)+ c2 H[_)l/.2(kp) ' (2.12)

where c1 and c2 are arbitrary constants, and H_;_/2 (kp) and H_+_/2 (kp) are the Hankel functions of the first

and second kind, respectively. Taking into account the asymptotic expressions for the Hankel functions for

a fixed order u and large values of p (see, e.g., [22]):

oxp[.( 4)]
conclude that only p-U2H[_)l/2(kp)__ satisfies boundary conditions (2.11) and consequently, the constantwe

c1 (see (2.12)) in any particular solution that satisfies the Sommerfeld conditions at infinity has to be equal

to zero. As the two functions to-1/2H[l_/2(_p)., and p-U2H}_)l/2(kp)., form a fundamental system of solutions

for the linear homogeneous second-order ODE (2.10), requiring that only one of them, p-1/2H}i)l/2(kP) , be

in the actual solution @m is equivalent to requiring that @re(P) be parallel to fl-1/2H(l_)l/2([_fl) forpresent

p _> R in the sense of the corresponding Wronskian vanishing at p = R:

det = O. (2.13)

dp k lq-1/2_ ]]J

Obviously, equality (2.13) enforced at p --/_ implies that it will hold for all p _>/_ as well. Equality (2.13)

is a linear homogeneous relation between a given Fourier component @l_ of the solution w(x) and the

corresponding Fourier component _p@l_ of its normal derivative ffpW(X) on the spherical surface p -- R.

The entire family of such relations for all 1 -- 0, 1, 2,... and m -- 0, ±1,..., ±l set at p -- R is equivalent

to saying that the function w -- w(x) originally defined inside the sphere, i.e., for p _< R, can be smoothly

extended to the region p _> R so that the extension will solve the homogeneous equation Lw = 0 for p _> R

and have a proper far-field behavior, i.e, satisfy the Sommerfeld condition (1.2b). Hereafter, we will refer

to relations (2.13) for l -- 0, 1, 2,... and m -- 0, ±1,... , ±l as to the artificial boundary conditions tbr the

three-dimensional Helmholtz equation on the spherical surface p -- R.

The ABCs for the two-dimensional case on the circular external artificial boundary p -- R can be

obtained similarly. We introduce polar coordinates (p, 0) in _, n -- 2, use standard Fourier expansion in



thecircumferentialdirectionwith respecttothecomplexexponentse-il°, 1 -- 0, ±1, ±2,..., and arrive at

the following collection of the second-order ordinary differential equations:

d2@tdp'2 ld@t [ 1_ ]+p_-p + k S- _bl=0, p>R, /=0,+1,+2,... (2.14)

for the unknown radial modes @l. These modes are also supposed to satisfy boundary conditions at infinity

o
' dp

which inm_ediately follow front the Sommerfeld condition (1.2a). For every given l, equation (2.14) is the

Bessel equation and has general solution

= tt(kp)+ 2)(kp), (2.16)

where Cl and c2 are, again, arbitrary constants. The asymptotics of the Hankel functions for large p's

indicates that to satisfy (2.15) one must have c_ = 0 in any particular solution that satisfies the radiation

conditions at infinity. This requirement leads to the following ABCs for the two-dimensional Helmholtz

equation:

det = O, (2.17)

where relations (2.17) should be considered for all l = 0,±1,±2,.... We refer the reader to the review

article [17] for further detail on the construction of ABCs for different equations in different settings. Let

us also reiterate that once the ABCs (2.13) or (2.17) are satisfied for all radial modes, then we can consider

Lw = 0 for p _> R, and as such, the resulting control sources 9(x) given by (2.1) will be compactly supported

between the interface F and the external artificial boundary p - R.

2.3. Types of Control Sources. Let us now analyze the continuous control sources front the stand-

point of their geometric location and type of acoustic excitation that they provide. To put this analysis into

a mathematical perspective, it will be convenient to use the apparatus of distributions, see, e.g., [22].

In our original derivation of formula (2.1), we have implicitly assumed that the function w(x) was

sufficiently smooth so that the operator L could be applied in the classical sense everywhere on _1 = _n \_.

In this case, the function g(x) is locally integrable, and can be interpreted as regular distribution. As

any other distribution, it can be represented as convolution of its own self with the 6-function: g -- 5 * 9,

which means that the control field g(x) can be formally viewed as the "sum" of elementary point monopoles

g(y)5(x - y) with regular density g: g(x) -- 5. g -- f g(y)5(x - y)dy. Next, we remind that by definition of

the fundamental solution: LG -- 5, the response to every such elementary monopole g(y)5(x-y) will be given

by 9 (y) G (x - y); and consequently, the overall control output G *g = f g (y) G (x - y) dy shall be interpreted

as superposition of the foregoing elementary responses, i.e., solutions generated by the aforementioned point

monopoles. Altogether we see that the original formula (2.1) provides the general solution for controls in a

particular class of functions, namely, that of regular distributions, which in terms of physics is characterized

as volumetric control sources of the monopole type on the complementary domain f_l -- R_ \fL Compactly

supported control sources discussed in Section 2.2 obviously fall into this category.



In manycasesit mayalsobedesirableto considersurfacecontrols,i.e.,thecontrolsourcesthat are
concentratedonlyontheinterfaceF. Letusfirstassumethattherearenointeriorsources,whichmeansthat
u+(x) = 0, and the acoustic field we want to control consists only of its adverse component, u(x) - u-(x).

After the control, it has to be equal to zero on the domain D. As shown in [18], the general solution for

surface controls is given by

[ ] 09(s.rf ) _ Ow Ou _(F) - _ ([w - u]r_(I')), (2.18)_n On r

where w = w(x), as before, denotes the auxiliary fimction-parameter that in this case has to satisfy the

homogeneous Helmholtz equation on the complementary domain: Lw = 0 for x E f_l, and the Sommerfeld

boundary condition (1.2a) or (1.2b) at infinity. Expressions in rectangular brackets in formula (2.18) denote

discontinuities of the corresponding quantities across the interface F. In so doing, the first term on the

right-hand side of (2.18) represents the density of a single-layer potential, which is a layer of monopoles on

the interface F, and the second term on the right-hand side of (2.18) represents the density of a double-layer

potential, which is a layer of dipoles on the interface F.

A detailed justification of formula (2.18) as general solution for surface controls can be found in [18].

Here we only mention that it basically amounts to proving that a given solution u(x) of the homogeneous

equation Lu = 0 on f_ can be represented as a combination of a single-layer potential and a double-layer

potential if and only if the densities of the aforementioned potentials are defined as [_ - o__]r 5(P) and
0

o_ ([w - @_(r)), respectively (cf. formula (2.18)). The direct implication is easy to establish by applying

the operator L to the discontinuous function

_.(x) for x•a
V(X) (2.19)

(_w(x) for x • _

in the sense of distributions, see [22], which yields

[ ] 0ow ou + ([w- (2.20)

and subsequently reconstructing u(x)]_ce = v(x)[_ce as convolution with the fundamental solution. The

inverse implication requires explicitly obtaining w(x) for a given u(x) and given surface densities, which is

done in [18], again, in the form of a special surface integral. Then, the control sources (2.18) are obtained

by simply taking (2.20) with the opposite sign, which guarantees the cancellation of u(x) on f_ by -v(x).

In the family of surface controls (2.18) we identify two important particular cases. First, the cancellation

of u(x), x • ft, can be achieved by using only the surface monopoles, i.e., by employing only a single-layer

potential as the annihilating signal. To do that, we need to find w(x), x • f_l, such that the overall function

v(x) of (2.19) would have the discontinuity on F only in its normal derivative, and not in the function itself.

This w(x) will then be a solution of the following external Dirichlet problem:

Lw = O, x• fh,

wit = ulr, (2.21)

subject to the appropriate Sommerfeld boundary condition (1.2a) or (1.2b). Problem (2.21) is always

uniquely solvable on f_l = R'_\f_. Second, one can employ only the double-layer potential to cancel out
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u(x), x c _t, i.e., use only surface dipoles as the control sources. In this case, the function w(x), x C f_l,

has to be such that v(x) given by (2.19) would have discontinuity on P only in the function itself, and not

in its normal derivative. This w(x) should then solve the following external Neumann problem:

Lw=O, xCf_l,

Ow Ou (2.22)
0nr=_nnr '

again, subject to the appropriate Sommerfeld condition at infinity, (1.2a) or (1.2b); the latter guarantees the

solvability of (2.22).

In a more general case, when interior sources are present, the results, in fact, do not change. Assume,

as before, that the overall acoustic field is the sum of its friendly and adverse components (see (1.4)):

u(x) = u+(x) + u (x), and we want to cancel out u (x) on fL Then, formula (2.18), where u shall now

be interpreted as in (1.4) and w is a function-parameter, will still provide the general solution for surface

controls. Indeed, since Lu + = 0 on _1 and moreover, u+(x) and °u+ Ix5on _ J are continuous across the interface

F, then (2.18) simply reduces to

g(surf) __ [0W OU-J 5(F)__n([,__u_]rS(F)),c9 (2.23)

where the new function-pa_'a_mter "uSis given by _(x) = w(x) - u+(x) and as such, satisfies the afore-

mentioned general requirements of w's. This means that the control sources g(SUrf)(x), X E F, defined by

(2.18), or equivalently (2.23), appear insensitive to the friendly component u+(x) of the acoustic field, and

will annihilate precisely u (x) on the domain f_. Furthermore, the entire family of surface controls (2.23) is

obviously the exact same family as we would have obtained if there were no interior sources and the overall

acoustic field consisted of only u-(x). It is also clear, that the same reasoning will apply to the particular

cases of purely monopole and purely dipole controls. Namely, if in problems (2.21) and (2.22) we interpreted

the boundary data u and o_ (respectively) in the sense of (1.4), then the solution w of either problem would

obviously be w(x) = ffJ(x) + u+(x), where vS(x) is the solution that corresponds to u+(x) - O. This means

that both the monopole and the dipole layer constructed using the respective solution w(x) would be the

exact same monopole or dipole layer that suppresses u (x) on Ft in the case of no interior sources and no

interior sound.

Altogether we conclude that as indicated by formula (2.18), surface control sources are combinations

of monopole and dipole layers, with the two "extreme" cases corresponding to either only monopoles, see

(2.21), or only dipoles, see (2.22). From the standpoint of physics and engineering, the monopole and dipole

sources provide different types of excitation to the surrounding sound-conducting medium. A point monopole

source can be interpreted as a vanishingly small pulsating sphere that radiates acoustic waves symmetrically

in all directions, whereas a dipole source resembles more a small oscillating membrane that has a particular

directivity of radiation (see, e.g., [9] for a more detailed discussion on the properties of different sources).

In the current paper, we are going to study the control sources of one physical kind only; namely, the

monopoles. 2 This class includes the volumetric controls (2.1), i.e., monopoles distributed in space, and their

2We intentionally leave out the discussion of how easy or how difficult it may be to implement a given type of control sources

in a practical setting.
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limiting case given by the monopole layer on the surface F (cf. (2.18)):

g(surf) [ OW OU ] _(F), (2.24)
monopole- _nn _ F

where w = w(x) in (2.24) solves the Dirichlet problem (2.21). The reason for narrowing down the class of

admissible controls is that having only one and the same physical type of sources greatly facilitates their

description and comparison using the same quantitative characteristics, e.g., acoustic strength (see Section 4

for more detail). This, in particular, will allow us to formulate (see Section 4.1) and solve (see Sections 4.2

and 4.3) the optimization problem for the control sources.

3. Discrete Control Sources. Similarly to the continuous constructions of the previous Section 2,

one can discretize the problem on the grid and obtain the control sources for the discrete formulation. From

the standpoint of applications this is, of course, preferred, because any practical design of a noise control

system can only contain a finite number of elements or devices (acoustic sensors and actuators) that will be

associated with the grid nodes in the discrete case. Details regarding the discrete formulation of the noise

control problem can be found in the monograph by Ryaben'kii [13, Part VIII], as well as in the papers [20,21];

here we only provide a brief account of the corresponding work. The analysis hereafter will not be limited to

any specific type of the grid. In particular, no adaptation or grid fitting to either the shape of the protected

region _ (i.e., interface F), or that of the external artificial boundary, will generally be required. In some

cases, though, it may simply be convenient and inexpensive to use regular grid of an appropriate geometry.

For example, as we discuss later, having a polar or spherical grid may greatly simplify setting the ABCs on

the circle or sphere of radius R, respectively, in the discrete framework.

3.1. Grids and Discretization. Let us now introduce a finite-difference grid N that would span both

and f_l. In the discrete formulation, the grid never stretches all the way to infinity, it is always truncated by

the external artificial boundary, which implies that the discrete control sources that we obtain will always be

compactly supported. Later in Section 3.3, we will discuss how to set the appropriate ABCs for the discrete

formulation. Let now u (h) be a representation of the acoustic field on the grid, and L (h) be a finite-difference

approximation of the differential operator L of (1.1). To accurately define the approximation, we will need

to introduce another grid M along with the previously defined H. On the grid _I, we will consider the

residuals of the operator L (h), and subsequently the right-hm_d sides to the corresponding inhomogeneous

finite-difference equation. We will use the notations n and m for the individual nodes of the grids N and 1_,

respectively, and the notation H,_ for the stencil of the discrete operator L (h) centered at a given m 6 }/_, so

that

L(h)u(h) m = Z amnu(h)n , (3.1)
n6Hm

where an,_ are the coefficients associated with particular nodes of the stencil. There are no limitations to

the type of discrete operators that one may use. We only require that the difference operator L (h) of (3.1)

approximate the differential operator L of (1.1) with the accuracy sufficient for a particular application.

Next, we introduce the following subsets of the grids 1_ and N, which will allow us to accurately dis-

tinguish between the interior and exterior domains, interior and exterior sources, and interior and exterior
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solutions on the discrete level:

_Y]_+ ---- _ @ _, _ ---- _/]_\M + ---- _ A _1,

N+ = U Xm, X-= U Nm, (3.2)
_nC_¢_ + mcNI-

7=X+AX -, 7+=N-N_, 7-=X+n_l.

We emphasize, that the grid M that pertains to the residuals of the finite-difference operator /;(h) is parti-

tioned into _+ and M directly, i.e., following the geometry of _ and £1. In contradistinction to that, the

grid N is not partitioned directly, we rather consider the collection of all nodes of X swept by the stencil

N,,, when its center belongs to _+, and call this sub-grid N+, see (3.2). Obviously, some of the nodes of

iSt+ obtained by this approach happen to be outside R, i.e., in R1, and these nodes are called 7-- The sets

N- and 7 + axe defined similarly starting from M-. The key idea is that whereas the grids M + and l_-

do not overlap, the grids N+ acid N do overlap, and their overlap is denoted 7; obviously, 7 = 7+ U 7 •

The subset of grid nodes 7 is called the grid boundary, it is a fringe of nodes that is located near the con-

tinuous boundary F and in some sense straddles it. The specific structure of 7 obviously depends on the

construction of the operator L(h) of (3.1) and the stencil N,_. For example, for the conventional second-order

central-difference Laplacians on rectangular grids, 7 will be a two-layer fringe of grid nodes located near F,

as shown schematically in Figure 3.1. Further specifics on the construction of grid boundaries can be found

in the monograph [13].

3.2. Discrete Noise Control Problem and Its General Solution. Having introduced the dis-

cretization (3.1) and grid subsets (3.2), we can formulate and solve the noise control problem on the grid.

We will reproduce below the key results of [13, Part VIII], see also [20, 21] for detail.

The discrete noise control problem is formulated similarly to the continuous one, see Section 1. Let/,(,_)+,
(h)+m E M+ , and f(_) , m C NI-, be the interior and exterior discrete acoustic sources, respectively. Let ttn ,

n E N, and o (h)- = f(h) ._ , n C N, be the corresponding solutions, i.e., L(h)tt (h)÷ = f(h)+ and _(h)tt(h)

Using the same terminology as before, we will call n(h)+ the discrete sound and u( h)- the discrete noise.

The overall discrete acoustic field u (h) is the sum of its sound and noise components, tt (h) = _u(h)+ + u (h) - on

N, and obviously satisfies the equation L(h)u (h) = f(h) = f(h)+ + f(h)-. The goal is to obtain the discrete

control sources g(h) = g(h) SOthat the solution _(h) of the equation L(h)tt (h) = f(h)+ _[_ f(h)- _[_ g(h) be equal

to only the sound component u (h)+ on the sub-grid N+.

Let us now remind that in the continuous case, the unique solvability of the governing differential

equation (inhomogeneous Helmholtz' equation) was guaranteed by the Sommerfeld radiation conditions

(1.2a) or (1.2b) at infinity. In the discrete case, we also need to guarantee the unique solvability of the

foregoing finite-difference equations, but we obviously cannot directly set the boundary conditions at infinity.

Therefore, the Sommerfeld radiation conditions have to be replaced by some other boundary conditions set

at a finite location. To preserve the physics of the model that involves the propagation of waves toward

infinity, one may choose to set the appropriate ABCs at the external artificial boundary that truncates our

domain. 3 We emphasize that previously, i.e., in the continuous case, we have introduced and used the ABCs,

see Section 2.2, only for the purpose of obtaining compactly supported controls, and the ABCs applied to

3The ABCs that would guarantee that the interior solution can be extended beyond the artificial boundary so that the

extension solve the Helmholtz equation and display the correct far-field behavior.
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Fro. 3.1. Schematic geometry of the domains, the stencil, and the grid boundary ? = ?+ U ?-: Hollow bullets "y+,

filled bullets "y-.

the auxiliary function-parameter w(x), see (2.13) or (2.17). In the discrete case, the ABCs should apply

to the actual solutions u (h), u (h)+, u (h)-, and g(h), which represent the acoustic fields on the grid. For the

purpose of constructing the controls, however, we will never need to implement the ABCs for the acoustic

solutions on the grid explicitly. We will only need to know that these boundary conditions can be obtained

(a variety of different approaches can be found, e.g., in [17]), and that they will guarantee the solvability of

the difference equations involved.

There will, of course, be an explicit role for the ABCs in the discrete framework as well. We will

employ these boundary conditions in the same capacity as we have used the original continuous ABCs

in (see Section 2.2). Namely, when obtaining compactly supported controls, the ABCs will truncate the

corresponding discrete function-parameter w (h). A specific approach to constructing the discrete ABCs that

we use in this work is based on discretization of the continuous ABCs of Section 2.2, and we discuss it in the

following Section 3.3. Altogether, both the discrete acoustic fields and the discrete-function parameter that is

used for constricting the control sources, see formula (3.3) below, are going to satisfy the same ABCs. This is

similar to the continuous case, when both the solution itself (i.e., acoustic field) and the function-parameter

w satisfied the same Sommerfeld radiation conditions at infinity.

The general solution for the discrete control sources g(h) = g(mh) that eliminate the unwauted noise u (h)-
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on N + is given by the following formula (of. formula (2.1)):

g(,)) = -L(h)w (h) , (3.3)
raEM-

where w (h) w (h)= n , n E N , is a special auxiliary grid function-parameter that parameterizes the family

of controls (3.3). The requirements that this function w (h) must satisfy are, again, rather "loose," and can

be considered natural discrete counterparts of the corresponding requirements of the continuous function-

parameter w(x), see the discussion around formula (2.2) in Section 2.1. Namely, at the grid boundary _ the

function w (h) has to coincide with the overall acoustic field u (h) to be controlled:

w(h) I,_ = u(h) (3.4)n nE_/"

We note that since, e.g., for the second-order discretizations the grid boundary 7 contains two layers of nodes,

_+ and _-, see Figure 3.1, then specifying the corresponding nodal values on _ is in some sense equivalent

to specifying the function and its normal derivative on F in the continuous case, see (2.2). Of course, this is

not a rigorous statement from the standpoint of approximation; we will address the approximation-related

issues later on. We also note that when creating practical designs, the boundary data u_ h) lnC_ shall be

interpreted as measurable quantities that provide input for the control system. In other words, we can think

of a microphone at every node of 7; these microphones measure the characteristics of the actual acoustic

generate the input signal u!_h) I_E _.field a/ld

The other requirement of w (h), besides the interface boundary conditions (3.4), has already been men-

tioned. The function w (h) must satisfy the appropriate discrete ABCs at a finite external artificial boundary.

The role of the discrete ABCs is the same as that of the continuous ABCs to provide a replacement for

the Sommerfeld radiation boundary conditions. This is done in the same approximate sense as the operator

L (h) approximates L, see Section 3.3. Other than the two aforementioned requirements, the function w (h)

is arbitrary and as such, parameterizes a substantial variety of discrete control sources, see (3.3). The latter

will provide the search space for optimization in Section 4.

The justification for formula (3.3) as the general solution for the discrete control sources is based on

the theory of difference potentials, see [13]. In the framework of this theory one can show that the solution

v (h) = v (h) of the equation L(h)v (h) = g(h) subject to the appropriate ABCs, where g(h) is defined according

to (3.3) and (3.4), will be equal to exactly -u (h)- on the interior sub-grid N+: v (h) I_EN+ = --u(h)-I_cr_+"

In other words, when the controls g(h) of (3.3) are added to the original source terms of the governing finite-

difference equation, they annihilate the unwanted noise on the domain of interest in the discrete sense, i.e.,

on the grid. The aforementioned solution (h) l is called the generalized difference potential with the
_n hEN+

density -_ (h) l defined on the grid boundary -/. It is shown in the theory of difference potentials, see [13],
_n InE_

that the potential depends only on its density -u (h) I,_c_ and not on the values of the function-parameter

outside -/: w!_ _)lneN_\_. Consequently, all possible controls g(h) obtained according to (3.3) with different

w(h)'s subject only to (3.4) and the corresponding ABCs (see Section 3.3), will produce identical output

on N + that will cancel out the unwanted noise u (h)- I,_eN+" This provides room for optimization of the

discrete control sources, see Section 4. It can also be shown that every discrete control source g(mh) lmeM_

that cancels out u!: _) I_eN+ can be represented in the form (3.3) with some function w (h) ,(h):_n ,hEN-,

that satisfies (3.4) and the external boundary conditions (ABCs). Similarly to the continuous case, this
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is done by explicitly constructing the appropriate w (h) for a given g(h) and u (h) l,_e_, we refer the reader

to [13, Part VIII] and [20, 21] for detail.

As has been mentioned, the cancellation of noise in the discrete framework is obtained on the grid N+ .

It is important to understand in what sense this discrete cancellation models the continuous cancellation

described in Section 2. This is basically the question of approximation of the continuous generalized potentials

by the discrete ones. To that effect, the theory of difference potentials, see [13], says that under certain natural

conditions, the difference potential v (h) = v![_), n E N+ , i.e., the solution to /i(h)v(h) = g(h) with g(h) given

by (3.3), approximates the continuous Calderon's potential v = v(x), x c f_, see (2.9), i.e., the solution

to llv = g with g given by (2.1). The aforementioned natural conditions include first the consistency and

stability of the finite-difference scheme for the Helmholtz equation. Consistency and stability will guarantee

convergence as the grid size vanishes. In addition, the discrete boundary data u!) )lnc_ of (3.4) have to

approximate the continuous boundary data (u, ou_) Ir of (2.2) in the following sense. Once tile continuous
function u and its first-order normal derivative _ are known at the boundary F, normal derivatives of

higher orders can be obtained via the differential equation itself, and the near-boundary values u (h) I_e_ can

be calculated using Taylor's expansion; the order of accuracy of the latter calculation with respect to the grid

size h has to be at least as high as the order of accuracy of the interior scheme. In this case, the quality of

approximation, i.e., the rate of convergence of the discrete potential to the continuous one with respect to h,

will be the same as prescribed by the finite-difference scheme itself. For the second-order central-difference

schemes discussed in Sections 3.3 and 4, this rate is O(h2). In other words, when designing an active control

system following the finite-difference approach, one can expect to have the actual noise cancellation in the

same approximate sense as the solution of the finite-difference equation approximates the corresponding

solution of the original differential equation. Note, in any particular practical setting we will need to require

sufficient wave resolution on the grid, i.e., the waves of length A = 27r/k, where k is the wavenumber in (1.1),

will have to be well resolved by the specific discretization.

3.3. Specific Discretization and Discrete Artificial Boundary Conditions. As has been men-

tioned, one can use different approaches to construct discrete ABCs (see, e.g., [17]) that are needed to obtain

compactly supported controls. The most straightforward technique, which is adopted in the current study,

although it is apparently not the most universal one, is to directly approximate the continuous boundary

conditions (2.13) or (2.17) with sufficient order of accuracy. For that, we will need a grid that would be

fitted to the shape of the external artificial boundary, i.e., a polar or spherical grid. An example of the

corresponding grid subsets 7 + and 7 for polar coordinates is schematically shown in Figure 3.2.

In all numerical experiments that follow in Section 4, we use a two-dimensional setup. Accordingly, we

introduce a polar grid that has J cells in the radial direction with the nodes pj = jAp, j = 0,... , J, so

that Po = 0 and pj = R; and L cells in the circumferential direction with the nodes 08 = sAO, s = 0,... ,L,

so that 00 = 0 and OL = 27r. For simplicity, it is convenient to assume that the grid sizes Ap = R/J and

AO = 27r/L are constant; in applications, the grid in the radial direction may be stretched, see Section 4.2.
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The Helmholtz equation is discretized on this grid with the second oder of accuracy by central differences:

1 1
__ | ^ s,j+l s,j--1 I +

L<h)_(h)I"'J=0j Ap A7 )
(h) _ 2w(h) w(h)

1 _s+l,j s,3 Jr- s--l,j _2w(h !
2 AO 2 +

O.
8,J

pj

(3.5)

The left-hand side of (3.5) is a particular realization of the operator (3.1) that employs the five-node stencil

shown in Figure 3.2. This operator will be used in Section 4 for obtaining optimal discrete control sources.

FIG. 3.2. Schematic geometry of the domains, the stencil, and the grid boundary _ = 3, + U'T in polar coordinates: Hollow

bullets "7+, filled bullets "7-.

To construct the finite-difference ABCs at p = R, we will also consider a semi-discrete form of the

homogeneous equation in the far field:

1 d (pdw.'_+lW.+l-2W.+W. 1 _j_k2,//js :0 ' 8=0, ,L-1. (3.6)
p dp \ dp ] p_ AO _ "'"

Introducing the direct and inverse discrete Fourier transforms, l = -L I2 + 1,... , L I2, s = O,... , L - 1:

L--1 L/2
1
E'._ _,._o,....: _ _,_.._o, (3.7)
s 0 1 --L/2+1

17



we reduce (3.6) to the following system of ODEs with respect to @t = @t(P):

1 d { d@'_ a 2 . 4 • 21AO
pdp _P_p) -_p 2wt + k2@t =0' a_ = _sln _-, p_>R, (3.8)

where again l = -L/2 + 1,..., L/2. Equations (3.8) are the same as (2.14), except that in the discrete case

the range tbr l is finite, and 12 in (2.14) has been replaced by ap in (3.8). Therefore, we can use the same

boundary conditions (2.17) for I = -L/2 + 1,... ,L/2:

d@t = v?t(R) r4(2) , (3.9)
ap p=R _._, (kR)

only with the Hankel functions of order I replaced by the Hankel functions of the order at. For implementation

in the foregoing discrete framework, boundary conditions (3.9) for all l = -L/2 + 1,... ,L/2 have to be

approximated with the second order of accuracy, which can be easily done as follows:

_(Z)(kR)
dp l_ oq

_3l'Z -- _31'Z-1 /_l _U)l,J Jr- _31,Z-1 __ O, /_l -- (3.10)
Ap 2 H(_ ) (kR)

Finally, relations in (3.10) for all l = -L/2 + 1,... , L/2 can be rewritten in the matrix form:

1 1 _ fit F -- T w..] 1, (3.11)
w.,z = F-ldiag - _p +/3t _pp w.,j 1 ,

where F and F -1 are matrices of the direct and inverse discrete Fourier transforms of (3.7), and w.,j and

w.,j _ are L-dimensional vectors of components ,(h) and ,(h) respectively, s = 0, 1, ,L - 1.
_ s,J _ s,J--1, " " "

In the three-dimensional case, instead of the discrete Fourier transforms (3.7) one can use expansions

with respect to the so-called finite-difference spherical functions (see [13, Part IV, Chapter 4]) that form

a full orthogonal system of eigenvectors for the spherical part of the discrete Laplacian. Other than that,

the construction of the discrete three-dimensional ABCs will be similar to the foregoing two-dimensional

construction. We do not delineate on it here because we do not conduct three-dimensional computations

in this paper. Let us also mention that tbr small l the difference between 12 and the corresponding a_, see

(3.8), will obviously be small as well. Therefore, for smooth functions w, for which the short-wave part of

the spectrum (large /'s) is insignificant, one may not even have to replace l in (2.17) by at in (3.9). We

have observed this type of behavior in the previous paper [12], in which we studied similar questions for the

Poisson equation.

3.4. Types of Discrete Control Sources. Similarly to the continuous case, see Section 2.3, let us

now identify some particular types of the discrete control sources. First, we define another subset of the grid

NI (more precisely, of NI ):

= •  -INto n< = 0}

Basically, l_._t is the interior subset of N[, such that when the center of the stencil sweeps this subset, the

stencil itself does not touch 7 +, see Figures 3.1 and 3.2. In other words, we can say that 1_._t is a subset of

1_- such that

U N,.=_\_+.
rnEN_._t

18



Having defined this new subset NIiT_t, we now introduce the auxiliary function W (h) ,(h).... n C N-, for (3.3)

as follows:

and

w(_h)[_c_÷ = u(h)n nC_+,

w(h)]_c_- = _.(h)n nC'7-

(3.12a)

(3.12b)
L(h)w (h) = 0 on _'nt"

As before, we also assume that w (h) satisfies the appropriate discrete ABCs, see, e.g., (3.11). Definition

(3.12a) means that on the interior part of the grid boundary 7 + we simply set w (h) equal to the given

?t(h): w(h)n ,_CZ+ = u(h) lnCz+ Definition (3.12b) is actually a discrete exterior boundary-value problem of

the Dirichlet type. Indeed, everywhere on and "outside" the exterior part of the grid boundary 7 , i.e., on

N \7 +, the grid function w (h) is obtained as a solution of the homogeneous equation £(h)w(h) = 0 (enforced

at thenodes supplementedbytheboundarydataon Ioc - : whichisspeci edfor
the unknown function w (h) itself. Note, relation (3.12a) and the first relation (3.12b) together are obviously

equivalent to (3.4). Therefore, the function w (h) defined via (3.12a), (3.12b) falls into the general class of

w (h)'s used for obtaining the discrete control sources, see Section 3.2.

Problem (3.12b) can clearly be considered a finite-difference counterpart to the continuous Dirichlet

g(h,surf) obtained by formulaeproblem (2.21). Therefore, its is natural to call the control sources g(h) = monopole

(3.3), (3.12a), (3.12b) the discrete surface monopoles. Indeed, because of the definition of w (h) given by

g(h,surf)(3.12a) and (3.12b), these monopole may, generally speaking, differ front zero only on the grid set NI \NIint,

which is a single "curvilinear" layer of nodes of grid NI that follows the geometry of F. Accordingly, the

output of these controls can be called the discrete single-layer potential; it was first introduced and analyzed

in our recent paper [18]. Let us emphasize that unlike the continuous surface monopoles (2.24), which

belong to a different class of functions rather than the volumetric sources (2.1) and (2.2) (singular &type

distributions vs. regular locally integrable functions), the foregoing discrete surface monopoles belong to

the same original class of discrete control sources (3.3) and (3.4). They can be considered as the ultimate

reduction of the volumetric discrete controls (3.3) and (3.4) to the surface. In the following Section 4, the

discrete surface monopoles will play a fundamental role for the analysis of the optimization problems.

Besides the discrete surface monopoles and the corresponding single-layer potential, one can also define

the discrete surface dipoles and, accordingly, the double-layer potential, see [18]. Grid dipoles are introduced

for the pairs of neighboring nodes so that the nodes in the pair are assigned equal in magnitude and opposite in

sign values. The control sources in the tbrm of discrete surface dipoles can be obtained by solving a special

Neumann-type discrete exterior boundary-value problem for the auxiliary function w (h) , which would be

analogous to the continuous problem (2.22). The construction of surface dipoles, however, is somewhat more

elaborate than the foregoing definition of surface monopoles. And because in this paper we basically focus

on the monopole-type sources only, we are not going to further delineate here on the issue of discrete surface

dipoles, and will rather refer the reader to our paper [18] for detail.

4. Optimization of Control Sources. Once the general solution for controls is available, in either

continuous (2.1) or discrete (3.3) formulation, the next step is to decide what particular element of this
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large family of functions will be optimal for a specific setting. There is a multitude of possible criteria for

optimality that one can use, we discuss some of them in the forthcoming paper 4. We should also emphasize

that in many practical problems the cancellation of noise is only approximate and as such, the key criterion

for optimization (or sometimes, the key constraint) is the quality of this cancellation, i.e., the extent of noise

reduction. In contradistinction to that, in this paper we are considering ideal, or exact, cancellation, i.e.,

every particular control field from either the continuous (2.1) or discrete (3.a) family completely eliminates

the unwanted noise on the domain of interest. Consequently, the criteria for optimality of the controls that

we can employ will not include the level of the residual noise as a part of the corresponding function of merit,

and should rather depend only on the control sources themselves. We realize, of course, that at a later stage

of the work we will also need to look into the issues of approximate, rather than identical, noise cancellation,

for the reason of further reducing the costs. In this case, optimal solutions found in the framework of the

exact cancellation are likely to provide good initial guesses for subsequent optimization in the approximate

framework. Moreover, it will probably be possible to use some results from the approximation theory to

deal with the issues of approximate noise cancellation once we have solutions for the exact cancellation. We

expect that this approach will be much faster than any algorithm of combinatorial type. A similar reduction

in computational complexity of optimization was outlined in our earlier work [6] on the optimal distributed

control of the exterior Stokes flow.

4.1. Optimization in the Sense of L1. To derive a meaningful criterion for optimization of the

control sources, let us first briefly discuss the physical meaning of the quantities involved in the formulation

of the problem. The most natural way to interpret the field variable u = u(x) (as well as its discrete

counterpart u(_h)) is to call it acoustic pressure. Indeed, acoustic pressure is the quantity which is directly

measured by the sensing devices (microphones), and as such can be immediately supplied as the required

boundary input data for the control system, see formula (2.2) for the continuous formulation of the problem

and formula (3.4) for the discrete formulation. Then, the quantity f = f(x) that represents distributed

monopole sources on the right-hand side of the original Helmholtz equation (1.1), as well as its discrete

counterpart f!,_O, shall be interpreted as volume acceleration per unit volmne multiplied by the ambient fluid

density (see, e.g., [8, 9]). Taking into account that we are only considering the time-harmonic case so that

_(. ) - -ico(. ), we can writeot

f(a:) = iwoo(l(x), (4.1)

where w is the frequency of the original temporal oscillations, 5 L)0 = const is the ambient fluid density, and

0(x) is the volume velocity per unit volume. Let us recall [8,9], that the actual volume velocity is defined as

the integral of the normal component of the fluid particles' velocity: q = fs U,_da, evaluated over a closed

surface S. It is often referred to as the acoustic source strength, see [8,9], that pertains to the sources located

inside S. Accordingly, the volume velocity per unit volume 0 in formula (4.1) is given by _ = lim IT fs Unda,
V_÷0 v

where V is the volume enclosed by S. For distributed monopole sources, this quantity is assumed finite and is

often referred to as the acoustic source density (i.e., acoustic source strength per unit volume). In the case of

an isolated point monopole, i.e., a &type source, which can be represented as a vanishingly small oscillating

4 j. LONCARIC AND S. V. TSYNKOV, Quadratic optimization in the problems of active control of sound, in progress, 2002.

5We remind that the wavenumber k in the Helmholtz equation (1.1) is given by k -- w/c, where c is the speed of sound.
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sphere of radius e with surface velocity U_, the volume velocity ca_l be introduced as q = lira U_4rce '2. When
e_÷O

the strength q of this isolated monopole is finite, the associated source density is formally infinite (which is

natural to expect for a a-type source). In the case of a continuous distribution of sources, the relationship

between the source density and source strength is standard (like between the mass density and total mass,

electric charge density and total charge, etc.) and basically says that the integral of the source density over

a given region is equal to the overall source strength associated with this region.

Obviously, the physical meaning of the quantity g = g(x) of (2.1) that describes the control sources is

the same as that of the original right-hand side f = f(x) in (1.1). If the field variable is interpreted as

acoustic pressure, then g(x) shall be interpreted as the volume velocity per unit volume or alternatively,

the acoustic source strength per unit volume (up to a multiplicative constant) of the control sources. It is

important to mention that as we are studying the time-harmonic traveling waves, all the quantities involved

in the formulation of the problem are complex-valued. This is essential, as otherwise it would have been

impossible to account for the key phenomenon of the variation of phase between different spatial locations.

Having identified the physical meaning of the variables involved in the noise control model that we have

adopted, we would argue in the current paper for selecting the optimal control sources based on minimization

of their overall absolute acoustic source strength. Mathematically, this translates into the minimization of

the L1 norm of the control sources:

I1_111- f I_(x)ldx --+ min, (4.2)

supp g

where the search space for minimization in (4.2) includes all the appropriate auxiliary functions w(x), by

means of which the controls g(x) are defined (see formulae (2.1), (2.2), and the discussion in the beginning

of Section 2.1). The advantage of using this criterion for optimization is that it has a clear physical inter-

pretation. Indeed, the total absolute volume velocity, i.e., the integral amplitude of surface velocity for all

the sources, is to be driven to a minimum, which can be a characterization of the corresponding engineering

devices. For comparison, we note that the criterion based on the the L2 norm:

[[g[['2 - ill [g(x)[2dx --+ min
VJ_- PP g

does not have a similar clear physical interpretation, although as indicated below (see also our forthcoming

paper, footnote 4) the corresponding numerical optimization problem is much easier to solve. Another

advantage of using the L1 norm, or in other words, the overall absolute acoustic source strength, as the

cost function for optimization (minimization), is that it characterizes only the control sources themselves.

This is a convenient distinction compa,'ed, e.g., to the power-based criteria, which would always involve the

interaction between the sources and the field they operate in. This interaction is often referred to as the

"load" on the sources by the field, see [9], and ,nay lead to certain types of degeneration when solving the

optimization problem, see footnote 4.

In the discrete framework, the L1 minimization problem that corresponds to (4.2) is formulated as

follows:

IIg<h)ll_- _ Vmlg_)l----+ min, (4.3)
mcM- n{p<R}
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where V,_ accounts for the volume in 3D or area in 2D of a particular grid cell, and again, the search space

includes all the appropriate auxiliary grid functions w (h), through which g(h) is defined, see formula (3.3).

The function w (h) is supposed to satisfy boundary conditions (3.4) on the interface, and the selected ABCs

at the external artificial boundary; for the two-dimensional examples analyzed in the following Section 4.2

the latter will be boundary conditions (3.11).

Let us now return to the definition (3.3) of the discrete control sources g(h) and adopt the polar framework

of Section 3.3. The finite-difference operator L (h) can obviously be interpreted as a matrix with N columns

and M rows, where N is the number of nodes n - (s, j) of the grid IN- such that the corresponding radial

coordinate pj <_ R, i.e., j _< J, and M is the number of nodes m - (s,j) of the grid NI- such that the

corresponding radial coordinate pj < R, i.e., j _< J- 1. Denote by w the vector of N components w(_h) - w!l _

such that n E N- and j _< J. The components of w can obviously be arranged in a particular way so that

this vector can then be decomposed into four sub-vectors:

W = [WT, WO, W.,J 1, W.,J] T, (4.4)

where w_ contains all those and only those w(_h) for which n E 7, w.j and w.,j 1 correspond to the

outermost and second to last circles of the polar grid, respectively, as in formula (3.11), and Wo contains

all the remaining components of w. In accordance with (4.4), the matrix £(h) can be decomposed into four

sub-matrices:

L (h) = [A, B, C, U], (4.5)

where the number of rows in all four is the same and equal to M, A has as many columns as there are nodes

in 7 (we denote this number 171, C and D each has L columns (see Section 3.3), and the number of colmnns

in B is obviously N - 171 - 2L.

Using representations (4.4) and (4.5), one can rewrite the optimization problem (4.3) as follows:

IIV(Aw_ + Bwo + Cw.,.l 1 + Dw.,J)lll _ min, (4.6)

where the norm in (4.6) is a conventional Lt norm on complex M-dimensional vectors, and V is an M x M

diagonal matrix with the entries given by the corresponding cell areas Vm. Next, we recall that the search

space for optimization (4.3) is composed of all the appropriate grid functions w (h), which means that the

vector w in the optimization formulation (4.6) is, in fact, subject to a number of equality-type constraints

that come from the interface conditions (3.4) and ABCs (3.11). More precisely, the first sub-vector w_ in

(4.4) is known and fixed because of (3.4) and we can rewrite (3.4) as w v = u_, where u_ is given. The last

sub-vector w.,.l in (4.4) is a function of w.,.l 1 according to (3.11). Therefore, we can conclude that only w0

and w.,j 1 contain free variables that provide the search space for optimization, and as such rewrite (4.6) as

min [IV(Bwo + (C + DT)w.,j_t + Aw._)[ll - n_n IlEz - flit, (4.7)
WO_.,J--1

where E= V[B,C+DT]isanMx (N-[7[-L) given matrix, z =[Wo, W.,j 1]Tisan (N-[7[-L)-

dimensional vector of unknowns, and f = - VAw.y is an M-dimensional known vector of the right-hand

side. Minimization problem (4.7) is, in fact, a problem of finding a weak solution in the sense of L1 of an

overdetermined complex linear system Ez -- f.

22



Let us first note that the most conventional weak formulation for an overdetermined system Ez = if

would be that in the sense of L2, rather than (4.7). The L2 minimization problem: IIEz -fl12 ---+ min, has

proven easy to solve numerically even for rather complex geometries. It does not require the Moore-Penrose

type arguments and can be conveniently solved by a standard QR algorithm; we report the corresponding

results in our forthcoming paper (see footnote 4). As has been mentioned, though, this formulation lacks

a convincing physical interpretation and therefore, hereafter we concentrate on solving the L1 optimization

problem (4.7).

By introducing M additional real variables ti C R, i = 1,... , M, one can reduce problem (4.7) to the

following optimization problem with equality-type constraints:

min E ti,

i (4.8)

E eijz j -- t i : O, i = 1,... , M,
J

which is equivalent to the problem with inequality-type constraints:

rain E ti,

i (4.9)

E eijzj -ti<_O, i=l,...,M.
J

If all the quantities involved in the formulation (4.7) were real, then problem (4.9) would, in turn, be

equivalent to the linear programming problem (see [19, Chapter 12, §4]):

min E ti,

i (4.10)

--ti _ Eeijzj _ ti, i = 1,... ,M,

J

which nowadays can be solved efficiently even for large dimensions. However, complex entries in E, z, and

if, see (4.7), are essential in order to account for traveling waves, so we will actually need to solve a nonlinear

problem (4.9) rather than a linear problem (4.10).

The most obvious disadvantage of optimizing in the sense of L1 is that the foregoing problem (4.9)

appears very difficult to solve numerically. Besides being nonlinear, the constraints are obviously non-

smooth. Moreover, strictly speaking those constrains are not convex either. Indeed, for every i = 1,... , M,

the inequality 2j eijzj -ti < 0 defines a cone in the space of variables ti, _( 2j eidZj), and ._( _j eijzj).

As we are only considering the upper half of the cone, this set is geometrically convex. However, algebraically

eijz j 2--t2the function _j of variables zj, ti, obviously cannot be convex. And the algebraic convexity (i.e.,

positive senti-definiteness of the Hessian) is exactly what distinguishes between the convex and non-convex

programming problems, with the latter being substantially more difficult to treat in a numerical setting,

see [19, Chapter 24]. Of course, problem (4.9) can be reformulated so that the constraints will become truly

convex:

minZ VG ,

i (4.11)2

E eijzj -ti<_O, i=l,...,M.

J

23



However, in the formulation (4.11) the most "harmless" cost function that one can think of, i.e., the linear

function _i ti, has been replaced by the function _i v_ that has singular derivatives at the optimum.

Experimentally, we have observed that this presents even more severe problems for a numerical optimizer.

Altogether, the combination of non-linearity, non-smoothness, and only "marginal" convexity (optimiza-

tion over cones) makes problem (4.9) a serious challenge even for the most sophisticated state-of-the-art

approaches to numerical optimization the approaches that are typically based on interior point meth-

ods [10, 19]. The difficulties are further exacerbated by the large dimension of the grid that the problem is

formulated on. Even for the aforementioned state-of-the art methods the maximum number of constraints

that they can handle is typically on the order of hundreds. And in problem (4.9), the number of constraints

is the same as the number of grid nodes M. As such, one can easily encounter an orders of magnitude

difference between the number of constraints that the numerical optimizer will handle, and the number of

grid nodes that will make the formulation of an active noise control problem practically interesting. This is

especially true for the three-dimensional problems.

In spite of all difficulties, we have still managed to obtain numerical solutions in two space dimensions

for some simple test cases. All numerical experiments that we have conducted indicate a very consistent

behavior of the L1 optimal solution for control sources. It happens to be the discrete layer of monopoles

on the surface g(h, surf) described in Section 3.4. Recall, this solution is obtained by applying formula
monopole

(3.3) to the auxiliary function w (h) defined by (3.12a), (3.12b). In the following Section 4.2, we report the

corresponding computational results, and in the subsequent Section 4.3, we provide a general proof of the

global L1 optimality of this surface monopole solution in the case of one space dimension.

4.2. Numerical Solution of the L1 Optimization Problem. For our numerical simulations, we

have considered the simplest possible two-dimensional geometric setup, with the protected domain f_ in the

form of a disk of radius r = 1 centered at the origin. The external artificial boundary was a circle of radius

R > r, as in Section 3.3. As such, the resulting discrete control sources were concentrated within the annular

region r < p < R.

In contradistinction to Section 3.3, we have used here a polar grid, which was stretched in the radial

direction. This allowed us to keep the cell aspect ratio constant. The grid is first built in the coordinates

2_ 27r and is constructed on the rectangle [-_,ln R] x [0, 27r]. Then,(lnp, 0), it has equal square cells Z- x Z-

the conformal mapping e h'p+i° maps it onto a polar grid with unifbrm angular spacing: 08 = sAO, where

A0 = z-2_and s = 0,. .., L, so that 0o = 0 and OL = 271",and nonuniform radial spacing flj = exp (_-j),
27r

j = -1,0,... , J, so that P-1 = exp (-W), P0 = 1 = r, and pj = R. It is convenient to define the grid sizes

in the radial direction as Apj - pj - pj-1 = exp (_. j) - exp (i_. (j _ 1)), j = 0,..., J. The Helmholtz

operator can be easily approximated on this new nonuniform grid with the second order of accuracy using the

same five-node stencil as shown in Figure 3.2. This involves little changes compared to the approximation

(3.5), which works for uniform grids, and we refer the reader to our paper [12] for detail. The discrete ABCs

(3.10) or (3.11) do not change, except that Apj needs to be substituted instead of Ap.

As we are building our control sources outside of the protected region ft = {(p, 0) I P < r = 1}, i.e., on

ftl = R2 \ft, we do not need to be concerned with the structure of the grid inside ft. For our constructions,

we will only need to use one grid circle inside fL This will be the innermost circle j = -1. The second to

innermost circle j = 0 already represents the interface F = Oft = {(p, 0) I P = r = 1}. Adopting the definition
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(3.2) of the grid subsets introduced in Section 3.1, we obtain:

NI+ ={(p/,0,)lj=-l}, 17I ={(pj,0,)10_<j_<J-1},

N+ ={(pj,0,)lj=-l,0}, N ={(pj,0,)l -l<_j<_J}, (4.12)

7= {(pj,O_)lj=-l,O}, 7+= {(pj,O_)lj=-l}, 7-= {(pj,O_)lj=O}.

For all definitions in (4.12), we assume s = 0,... , L - 1.

In the computational experiments, we have used grids with four times the number of cells in the circum-

ferential direction compared to the radial direction. Specific grid dimensions were: L = 32 and L = 48, and

accordingly, J = 7 and J = 11. (Note, as j = -1, 0,... , J, the number of cells in the radial direction is J+l.)

The wavenumber k in the Helmholtz equation (1.1) was chosen k = 0.5. The excitation, i.e., the acoustic

field u (h) that drives the control system, was taken in the analytic form of a shifted fundamental solution,

see formula (2.3a), as if it were generated by the point source 5(x - xl), where xl = (p cos 0, p sin 0) = (5, 0).

We reemphasize that our approach does not require an explicit knowledge of the exterior sources of noise.

We only need this function u (h) as a sample field to be used as given data in formula (3.4).

We have also considered another case: L = 48, J = 9; for this case, we have selected k = 0.9. The

excitation was produced by two point sources, (f(x - xl) + 5(x - x,2), where xl = (5, 0) and a_2= (1, 2).

The matrices and vectors involved in the formulation of the optimization problem (4.7) were constructed

in accordance with the chosen geometric setup. Namely, the dimension of L (h), see (4.5), was M x N -

(L-J) x (L-(J+ 2)), the dimension of A, which corresponds to the variables on 7, was M x 2-L - (L-J) x 2-L,

the dimension of B was M x (N - 4L) - (L- J) x (L- (J - 2)), and the dimension of either C or D was

MxL-(L.J) xL.

We have tried several numerical approaches for solving the corresponding minimization problems (4.9),

starting with the algorithms available as a part of the standard Optimization Toolbox in MATLAB. However,

our best numerical results were obtained with the software package SeDuMi by J. F. Sturm. ° This is a

numerical algorithm for optimization over cones [15], it employs the ideas of interior-point methods, and

the self-dual embedding technique of [23], see also [11]. The algorithm allows for complex-valued entries,

which is very important in our framework, and also for quasi-convex quadratic and positive semi-definite

constraints. Of course, all the cases that we have been able to compute using SeDuMi (see above) can

still be treated only as simple model examples on the scale of potential applications for noise control (see

Section 4.1). However, the optimal solutions that we have obtained all demonstrate a very coherent behavior

that we discuss below. On Figures 4.1(a), 4.2(a), and 4.3(a) we plot magnitudes of the L 1 optimal solutions

computed with SeDuMi [15]. Let us also note that SeDuMi is, in fact, a rather general procedure, and

one may expect better numerical performance from more focused algorithms, such as the one proposed by

Andersen, et. al. in [1]. In the future, we plan on trying the algorithm of [1] for solving the foregoing Lt

minimization problem.

Apparently, the most obvious observation that one can make by looking at Figures 4.1(a), 4.2(a), and

4.3(a) is that in all cases the optimal solution (i.e., the L1 minimum) is concentrated on a single circumfer-

ential layer of grid nodes. This is the second to innermost circle of the grid N-, see (4.12), i.e., the grid line

j = 0. It corresponds to the outer portion of the grid boundary _/ , see (4.12), and in the continuous case

6http://fewcal.kub.nl/sturm/software/sedumi.html
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to the interface F itself, F = Oft = {(p, 0) IP = r = 1}. In other words, the L1 optimal solutions for control

sources that we have computed can all be interpreted as layers of monopole sources on the perimeter of the

protected region ft. This clearly calls for comparing these optimal solutions with the densities of discrete

single-layer potentials introduced in Section 3.4.

To conform the general definitions of Section 3.4 to the specific geometric setup analyzed here, we need

to construct on N \_/+ the solution w (h) of the discrete exterior Dirichlet problem (3.12b) for the case when

7 is the grid circle j = 0 (in this case, Nil.,,t corresponds to j > 0). Then, the operator L (h) of (3.5) needs

to be applied to the overall resulting function w (h), including its definition (3.12a) on the inner part 7 + of

the grid boundary: w(_h) _e_+ = u_') ,_e_+" Since we know ahead of time that the resulting controls will

only differ from zero on 7- (which is an equivalent of 1_- \NIin t in this case), we need not consider w (h)

anywhere beyond j = 1. Consequently, for the purpose of constructing surface monopoles, we may simply

set J = 1, and consider w (h) on three grid circles only: j = -1, j = 0 = J - 1, and j = 1 = J. In so doing,

we obviously have to specify the ABCs (3.11) right on the interface; in other words, the input for the ABCs

will be on 7-, .i.e., at j = 0, and the output on the outermost circle j = J = 1. Clearly, specifying the

ABCs on "7- allows us to reconstruct w (h) for j = J directly by formula (3.11), i.e., without actually solving
8,J

the aforementioned exterior Dirichlet problem. And once we know w (h) for j = -1, 0, and 1, we can easily

obtain the discrete surface monopole controls on 7-, i.e., for j = 0. As in Section 3.4, we will denote these

(h,surf)

control sources gmonopole"

(a) L1 optimal solution

0

(h,surf)
(b) Surface monopoles gmonopole

F_c. 4.1. Control sources for L = 32, J=7, k = 0.5, excitation6(x Xl), Xl = (5,0).
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FIG. 4.2. Control sources for L 48, J 11, k 0.5, excitation 5(_ - _1), $1 (5, 0).

3_

25_

2_

15_

05_

O>
3

3 3 3 3

(h,surf)

(a) L1 optimal solution (b) Surface monopoles g ....... pole

FIG. 4.3. ControlsourccsforL=48, J=9, k=0.9, cxcitation_(_z _1)÷_(_ _2), _1=(5,0),x2 =(1,2).

(h,surf)

In Figures 4.1(b), 4.2(b), and 4.3(b), we plot magnitudes of the discrete surface controls gmonopole for the

exact same cases, for which we have explicitly computed the L1 minimal solutions using SeDuMi. Comparing

Figures 4.1(a), 4.2(a), a_ld 4.a(a) with respective Figures 4.1(b), 4.2(b), and 4.3(b) at a glance, we conclude

that there is virtually no difference between them. In other words, the L1 optimal solutions coincide with

g(h,surf)the surface monopole control sources monopole' TO corroborate this conclusion accurately, we evaluate the

L1 norm of the difference on the grid N[ between each L1 optimal solution and the corresponding surface
(h,surf) (h,surf)

monopole layer gmonopole, assuming that gmonopole _ 0 everywhere except on "7-. The results are presented
in Table 4.1.
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Case

TABLE 4.1

Comparison of the computed L1 optimal solutions with surface monopoles.

min ¢ >IIg<h)llx, _g(h,surf)
monopole 1,_-

g(h) _ g(h,surf) II
min monopole II 1,iVY-

Figure 4.1 0.5764 0.5761 0.0067

Figure 4.2 0.5769 0.5761 0.0036

Figure 4.3 0.9760 0.9750 0.0083

Relative diff.

0.0117

0.0063

0.0085

The data in Table 4.1, which take into account both magnitude and phase, do corroborate that the

respective solutions are close to one another. Moreover, by comparing the second and third rows in Table 4.1

we can apparently observe the phenomenon of grid convergence. Indeed, the case of Figure 4.2 is computed

on the grid which is 1.5 times finer in each direction than the grid of Figure 4.1. For a second-order scheme,

we can consequently expect a drop in the error by a factor of ,_ 2.25, which we indeed see in Table 4.1 for both

_(h) Eventhe absolute and relative difference between the L1 minimum groin and surface monopoles g(h,s,,rf)
monopole"

though the solutions that we are computing are obviously not smooth, and as such, the grid convergence may

be difficult to justify analytically, the foregoing experimental observation certainly makes our point about

the coincidence of Ah) and g(h,surf) even more convincing.
Ymin monopole

Summarizing the foregoing numerical results, we can see that in all the cases analyzed the minimum for

the L1 norms of the control sources g(h) on 1_ see (4.3), is actually given by the L1 norm of g(h,s,,rf) .
' monopole"

__-- g(h,surf)min IIg(h)lll, _ monopolelll,M- -
w(h)

The right-hand side of the previous equality can be recast into a more natural form by noticing that surface

g(h,surf)controls monopole are defined only on 7 • Then, we can replace the L1 norm over the two-dimensional grid

domain NI- by the Lt norm over the "one-dimensional" grid subset 7-. This will bring about a factor of Apt

because obviously the cell areas Vm, see (4.3), that correspond to nodes j = 0 are all equal and proportional

to Apt. As such, we obtain:

__-- g(h,surf)min IIg(h) Ill,M_ monopole II 1,_/_ AR1. (4.13)
w(h)

Equality (4.13) basically conjectures global minimality of the surface monopole solution for active controls

in the sense of L1.

As of yet, of course, we can only claim that equality (4.13) holds because it has been corroborated

by a particular collection of numerical experiments that we have conducted. However, motivated by the

consistency of our experimental observations that all suggest (4.13), see Figures 4.1, 4.2, and 4.3, and

Table 4.1, we have been able to prove a general result on the global L1 optimality of the surface monopole

solution for controls in both continuous and discrete formulation in the one-dimensional case.

4.3. One-Dimensional Proof of Global L1 Optimality. It will be convenient to consider simulta-

neously both the continuous and discrete formulation of the one-dimensional noise control problem. Let's

denote the independent variable x C N and introduce the one-dimensional Helmholtz equation for the field

variable u = u(x) (cf. equation (1.1)):

d2u

zu = _ + k2u = .f(x). (4.14)
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Then, we introduce a uniform grid z_ = n - h, n = 0, -4-1, 4-2,..., of variable x, and approximate equation

(4.14) with the second-order central-difference scheme

(h) _ 2u(h) + u(h)_a k2u (h) f(h). (4.15)L(h)u(h) _ _n+l
- h2 + =

Note, we are using here the same subscript "n" for both the discrete unknown function u (h) and discrete

right-hand side f(h), because for the particular scheme (4.15) they are defined on the same grid. We will

still need to distinguish, however, between the grids NI and N when constructing the necessary grid subsets.

Let us assume that our protected region D corresponds to x < 0 and accordingly, the complementary

region D1 corresponds to x _> 0. Then, the continuous control sources will be given by (cf. formula (2.1))

d2w k2w , (4.16)
9(x) - dx 2 x>o

where the auxiliary function w(x), x >_ O, is supposed to satisfy the interface conditions (cf. formula (2.2))

dw du (4.17)
w(0) u(0),  x=o dx

and the appropriate ABC, i.e., the radiation boundary condition, as x ----+ +oc. The quantities u(0) and
du

3_ ]x 0 in (4.17) are assumed given.

Next, applying the definitions of Section 3.1 to a particular stencil given by (4.15), we will have: NI+ =

- = -1,-2,...}, 1M[- = - = 0,1,2,...}, N + = = 0,-1,-2,...}, N- = =
-1, 0, 1, 2,... }, and 7 = {nln = -1, 0}. Accordingly, the discrete one-dimensional control sources will be

given by (cf. formula (3.3))

,(h) -- 22/2}h) __ _t)}/21 -- k2W(nh) n>O (4.18)g(nh) = _n+l h 2

where the auxiliary grid function w!_h) is supposed to satisfy the internee conditions on 7 = {n I n = -1, 0}

(cf. formula (3.4))

w_'_ = u(_, w; h) = u(0h), (4.19)

and the appropriate ABC at infinity, or in other words, for large n's. Again, the quantities u(_ and U(oh) in

(4.19) are considered given.

To obtain the continuous ABC, we assume that the auxiliary function w(z) satisfies the homogeneous

version of equation (4.14): Lw = 0 for x _> X > 0. This equation has two linearly independent solutions:

e -ikx is a right-traveling wave, and e ik_ is a left traveling wave. In the one-dimensional framework, we obvi-

ously need to treat the right-traveling wave as outgoing for the artificial outer boundary x = X. Therefore,

employing the same mode selection principle as in Section 2.2, we arrive at the following ABC (cf. formulae

(2.13) and (2.17))

dw = -ikw(X), (4.20)
_i
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which guarantees that only one of the two aforementioned linearly-independent modes, namely e -ikx, will

remain in the composition of w(x) for x _> X. Note, boundary condition (4.20) can, in fact, be interpreted

as the Sommerfeld radiation condition. In the one-dimensional case, it can be specified at a finite location,

in contradistinction to the multidimensional case when these boundary conditions can only be specified at

infinity, see formulae (1.2a), (1.2b). Altogether, the continuous auxiliary function w = w(x) that defines the

control sources g(x) by ibrmula (4.16), is specified on the interval [0, X] and satisfies boundary conditions

(4.17) and (4.20).

To obtain the discrete one-dimensional ABC, we will not approximate (4.20) with finite differences, as

we did in Section 3.3 for the polar case, when it was basically the only option. We will rather use a genuine

finite-difference approach, which has shown efficient in many cases (see the review [17]), and which was

studied in our recent paper [4] for a more complex formulation that involves a high-order approximation to

the Hehnholtz equation. Let's assume that the auxiliary grid function w (h) satisfies the homogeneous version

of equation (4.15): L(h)w(h) I_ = 0 for n _>N > 0 (one may think that X = (N - 1) • h). This homogeneous

finite-difference equation has two linearly independent solutions: q_ and q _, where q and q 1 are roots of

the corresponding algebraic characteristic equation

q2 _ (2- kSh2)q + 1 = O.

These roots are given by the formulae:

(4.21)

i 1_2h2 lk'>h2 4/ 122q = 1 - 1k2h22 -ikh 1 - 4.o .o , q-l= 1 -- 2 + ikhyl - _k h . (4.22)

It is easy to see from (4.22) that for small h the discrete wave qn approximates the continuous right-traveling

wave e -ikx, and the discrete wave q-'_ approximates the continuous left-traveling wave e ikx. Therefore,

the solution q_ shall be interpreted as a discrete outgoing wave, and q _ shall be interpreted as a discrete

incoming wave, for the external artificial boundary n = N. To guarantee the radiation of waves, we need

to select qn and prohibit q-n, or in other words, require that w(_h) = c. qn for n _> N, where c = const.

Accordingly, we arrive at the following discrete ABC:

w_ _) = q. w_O1, (4.23)

which guarantees that only one of the two aforementioned linearly independent solutions, namely q_, will

remain in the composition of w(_h) for n _> N. Altogether, the auxiliary grid function w (h) = w (h) that

defines the control sources g(h) by formula (4.18) is specified on the grid subset {n In = -1, 0, 1,... , N} and

satisfies boundary conditions (4.19) and (4.23).

From now on, we will be considering only the situation with no interior sources. In other words, the

only field present in the model before control will be the incoming field with respect to the protected region

f_ = {x C N Ix < 0}. In the continuous case it can be expressed as u(x) - u-(x) = Ae ikx, and in the discrete

case as u(_h) = u!) ) = Aq -n, where A = const. This restriction, in fact, presents no loss of generality.

Indeed, if we had both components, u(x) = u (x) + u+(x) = Ae ikx + Be ikx, and chosen w(x) according

to (4.17) and (4.20), then we could have replaced this w(x) by @(x) = w(x) - Be ikx _ w(x) - u+(z).

The function @(x) would satisfy the new interface conditions _(0) = u-(0), d_ _ d_-_-_lx 0 -- _-_ Ix 0 instead

of (4.17), and the same original ABC (4.20). Most important, the control sources generated by this new
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auxiliaryfunctionaccordingto (4.16)will betheexactsamecontrolsourcesasthosegeneratedbyw(x):

Lw = L[_+Be -ik_] = L_t_,x >_ O. Similarly in the discrete case, if we had u!_0 = u_(h)- +u_'(h)+ = Aq_n+Bq_,
(h)+then the auxiliary functions w}[0 and _!_) = w![0 - Bq n - w}[0 - nn would generate the exact same

discrete control sources according to (4.18). Of course, the foregoing argument is in complete agreement

with the general discussion of Section 2 on insensitivity of the control sources to the interior sound.

In the continuous one-dimensional case, the interface between the protected region ft = {x E R I x < 0}

and its complement ftl = {x C R I x _> 0} is obviously one point x = 0. To construct the corresponding

"surface" monopole controls, we consider a special form of the auxiliary function w(x). Namely, if the

original field to be controlled is the left-traveling wave that propagates into l], u(x) = u-(x) = Ae _kx,

x < 0, then we take w(x) in the form of the right-traveling wave: w(x) = Ae -ikx, x _> 0. Obviously, this

function w(x) solves the homogeneous equation on _1: Lw = 0, x _> 0, and satisfies the ABC (4.16). It

also satisfies the Dirichlet boundary condition at the interface x = 0: w(0) = n(0). Altogether, we see that

w(x) selected this way solves the one-dimensional counterpart of the exterior Dirichlet problem (2.21) that

we used in Section 2.3 to obtain the control sources in the form of surface monopoles. According to the

analysis of Section 2.3, surface monopoles are obtained by applying the operator -L to the function v of

(2.19), which has discontinuous first derivative across the interface. In the specific one-dimensional case that

we are studying here, this function is given by

_Ae ik_ for x < 0

v(x) = [ Ae-ikx for x_>0
(4.24)

Applying the operator -L, see (4.14), to the function v(x) of (4.24) in the sense of distributions, see [22],

we obtain the following "surface" (in fact, point) monopole control source (cf. formula (2.24)):

g(S_rf) = 2AikS(x). (4.25)
monopole

To obtain the discrete "surface" monopoles in the one-dimensional case, we need to consider u}[0 = Aq -_

for n _< 0, and w!h) = Aq _ for n _>0; we also set w(_ = u(1_l). The aforementioned w(_h) solves the discrete

homogeneous equation L(h)w (h) = 0 for n > 0, satisfies the discrete ABC (4.23), and the interface conditions

w (h) = u (h), or equivalently (4.19). In other words, the selected w (h) solves the one-dimensional version of

the exterior Dirichlet-type problem (3.12b), (3.12a), that we used in Section 3.4 to derive surface monopole

controls in the discrete framework. Applying the operator -L (h), see (4.15), to the foregoing function w (h)

we obtain the discrete surface control source

g(h, surf) {oA (2_h _- _- _2 )
monopole

for It=0

(4.26)
for n>O

We are now prepared to formulate our central result on global L1 optimality of surface monopoles

in the one-dimensional discrete framework. For any function w (h) = w! )) that satisfies the ABC (4.23)

and the interface conditions (4.19), where u (h) = Aq -_, n <_ O, the Lt norm of the corresponding control

sources (4.18) will always be greater or equal than the magnitude of the surface monopole (4.26) times

_ g(h, surf) W!:0the grid size h: IIg(h)lll > mo_opo_e h. In the case = Aq '_ the equality is achieved, and as such:

g(h, surf)min_,(h) IIg(h)ll 1 = mo_opole h. In other words, the following theorem holds.
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THEOREM 4.1. Let a complex-valued function w (h) -- w (h) be defined on the grid n -- -1, 0, 1,..., N,

where N > 0 can be arbitrary. Let w_ h) = A, where A 6 C is a given constant; and w(t__ = qw (h) and

w_ 0 = qw_O_l, where q is defined by formula (_.22). Then,

_1 (h)rain w(_l - 2w(h)h2 + Wn-1 + k%w_ h)
w(_h) n 0

= [A] 2_21 + k 2 . (4.27)

Proof. Let us introduce new quantities p0, pl,..., PN 2 SO that w_ h) -- pow_ h), w_ h) -- plw_ h), ...,

W_l = PN-2W_ ) 2" Then, the sum on the left-hand side of equation (4.27) can be recast in the following

form (taking into account that w(_ = qw_ h) and w_ ) = qw_)l):

_-1 - 2w!__+ w}_'_E h2
n 0

+ k2w (h)
=]A] Po+q-2 popl-2po+l k2poh 2 + k 2 + IAI -h_ + +

PlP2--2p1+l[AI[Po[ h 2 k2pl P2P3 -- 2p2 + 1-4- -4-[A[[poIIpll h2

PN--2q -- 2pN--2 + 1+lAllpollpl[... Ip_-31 -t7 + k_P_-_ "

Next, we introduce new notations: Po = q + zo, pl = q + z1, ..., PN 2 = q + ZN 2, where q is defined by

(4.22), and all the quantities axe generally assumed complex. Using these new notations, we can rewrite the

generic term on the right-hand side of the previous equality as follows:

Pn+lPn+2 --2pn+l -4-1[Allpollpll... Ipn[ _ + ]_2pn+l =

IAllq + zollq + z_l ... Iq + z,_l (q + z,_+l)(q + zn+2)hs - 2(q + zn+l) + 1 + kS(q + z,_+l) =

q2 _ 2q + 1 -2 Z,_+lZ,_+2 + q(z,_+l + Z,,+'2) -- 2Z,_+1

IAllq+zollq+Zll...lq+z,_l ----hT--- +_ q-} h2

0

IAllq + zollq + z_l . . . Iq + z_l h2

IAllq + zollq + zl[ [q+zn[ Zn+2(q-_ Zn+l) Jr Zn+l "

• .. h2 _Y-_ .

}2Zn+l =

In the last chain of equalities, expression _ + k2q turns into zero by virtue of the characteristic equation

(4.21), and # = q - 2 + k'2h 2. Using the definition of q (4.22), we can obtain:

i 122 _k2h 2- ikhil- _kh =]p]2 = -1 - _k2h 2 - ikh 1 - _k h + k2h '2 = -1 + 12 2

( _ )2 ( _ ) 144 k2h2 144-1+ k2h 2 + k2h 2 1- k2h 2 = l- k2h 2 + _k h + - _k h =1.
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Finally, collecting all terms, we can now have:

Z W_l h_ + =IAI_+2._ + +IAI h_ +.- +

IAIIq+zol z2(q+zl) z_t * z3(q+z'2) + z_22#h 2 + + ]Allq+zollq+zl] h 2 +'"

ZN--2

+lAIIq+_ollq+_l...Iq+_N-_l _-, >

÷, -i l ÷ i.i- ÷ I il.÷ ÷ i.i.

IAllq+zollq+zll +lAllq+zollq+zl _-I/_l-...+lAllq+zollq+zll...Iq+zN-3l I.I =

IAI 2_ + k_ o

In other words, we have obtained the inequality

N--1 ,(h) __ 2W(n h) __ (h) _ k 2E _n+l "_ Wn--1h2 + ]_2w!_) _>IAI 2,_- + . (4.28)
n:0

To establish the result of the Theorem, i.e., formula (4.27), it only remains to show that there will be a

particular w(h) = _'(h), for which inequality (4.28) transforms into the equality. Clearly, the equality in

formula (4.28) is achieved for w!_h) = Aq n, n > O, because in this case Zo = Zl ..... ZN-2 = 0. This

completes the proof. [3

Let us also recall that if we multiply the sum on the left-hand side of either formula (4.27) or formula

(4.28) by the grid size h, we obtain the discrete L1 norm of the control sources g(h). Therefore, inequality

(4.28) transforms into

g(h, surf)IIg<_)ll_-> monopole h, (4.29)

and consequently, we have, in effect, demonstrated the global L1 minimality of the surface control sources:

= g(h, surf)manIIg(_)lll monopole h. (4.30)
w(h)

Equality (4.30) is a one-dimensional counterpart of (4.13), but unlike the experimentally established formula

(4.13), equality (4.30) has been proven rigorously.

The foregoing proof of Theorem 4.1 also reveals the mechanism of discrepancy between the optimal

control g(h, surf) and all other suboptimal controls. Namely, every time the auxiliary function w_ h) "departs"
monopole

from the pure right-traveling wave Aq% which is equivalent to having zn _ O, we may pick up additional

value of Ilg(h)lllin casethe actnal estimate based on the triangle inequality that we use:

IAllq + zollq + zll Iq+znl Zn+2fq ÷ zn+l) Zn+l .

... h2 + _7-t_ >--

Zn+ 1 ,,
]milq + z0ilq +zll...lq +z_ _ t* - [Aliq + zollq+ zll...iq +z_iiq +Z.+lllZn+2lh 2
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happens to be "strictly greater" rather than "greater or equal" for this given term. It is also interesting to

look into the role of the ABC (4.23). This boundary condition "swallows" the last term in the sum so that

g(h, surf)all the previous terms can cancel one another in pairs, and only the first term monopole will remain.

Next, we will analyze the continuous case. Let's assume that w(x) is a regular smooth function, which

is defined on the interval [0, X] and satisfies boundary conditions (4.17) and (4.20). Let us also assume that

the gird function w (h) = w (h), n = 0, 1, ... , N - 1, is the trace of w(x) on the aforementioned uniform grid

with size h: w_h) = w(xn) - w(n • h). Note, we need to require sufficient smoothness of w(x) in order

to guarantee the consistency of the finite-difference scheme: £(h)w (h) = I,w + O(h 2) (see equations (4.14)

and (4.15)). Let us additionally define w_'l) = qw(oh) and w_ _) = qw(_O_l, in accordance with the boundary

conditions (4.19) and (4.23), respectively, like in the formulation of Theorem 4.1. Then, for small h we can

disregard the quadratic terms in the definition of q, see (4.22), and have for the right endpoint:

-
-- ikw(tN')l,

h

which is obviously an approximation of the continuous ABC (4.20) with the accuracy O(h). Similarly, for

the left endpoint we obtain:

W(O h) -- w(h) 1 _ ikw;h)
h

which is an O(h) accurate approximation of the second boundary condition (4.17) under the assumption that
du

the field to be controlled is u(x) = u-(x) = Ae ikx, x < 0, and consequently, _ Ix=o = iku(O). Altogether, we

have constructed a grid function w (h) = w (h), n = -1, O, ... , N, that satisfies the conditions of Theorem 4.1

and also approximates on the grid all the continuous requirements to the function w = w(x).

Let us now again multiply both sides of inequality (4.28) by the positive quantity h, and consider

independently the limit on its right-hand side, and the limit on its left-hand side, as h --+ +0. First, we

obtain:

]d[ 2 +k 2 h=]d] -_- 1- k2h 2+ h_2]d[k, as h--++O.

Note, the limit is equal to the magnitude of the surface monopole in the continuous formulation, see (4.25).

Next, on the left-hand side we have:

N 1

E
n 0

_. (h) -- 2W(n h) .._ W_h21
n+l

h 2
1 d2w k2W(Xn)+ h = + h + O(hb --+

n 0

X

----+ f d2w + k2w(x)
0

as h _ +0.

Note, the limit is equal to the L1 norm Ilgllx of the continuous control sources g(x) defined by formula (4.16).

As inequality (4.28) holds for any given value of h, we can claim that it will also hold in the limit h ---+ +0.

Therefore, we have arrived at the following

COROLLARY 4.2. Let a complex-valued function w = w(x) be defined on [0, X]. Let w(O) = A, where
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A C C is a given constant; and w'(O) -- ikw(O) and w'(X) -- -ikw(X). Then,

X

f d2w_-X2 (X) + k2w(x) dx > 21AIk.
0

(4.31)

It is easy to see that the requirements of w(x) formulated in Corollary 4.2 are equivalent to the conditions

that guarantee the appropriateness of w (x) for constructing the control sources g (x) using (4.16), see formulae

(4.17) and (4.20). Therefore, the result of Corollary 4.2, i.e., inequality (4.31), can be recast as

119111>_ 2lAlk. (4.32)

g(SUrf) definedOn the right-hand side of inequality (4.32) we have magnitude of the "surface" monopole monopole

by formula (4.25). Note, unlike in the previously considered discrete case, when the minimal solution

g(h, surf)monopole of (4.26) was an element of the same class of control sources g(h) defined by (4.18), here the
(surf) _

minimum gmonopole[X) defined by (4.25) belongs to a different class of functions, namely, singular (i.e., 5-
(surf) , ,

type) distributions, as opposed to regular (i.e., L_ 1°c)) distributions. In other words, gmonopole[X) __ LI(R),

(surf) , ,
and not even L_I°°)(R). As such, we cannot introduce the L 1 norm of gmonopole_X). Therefore, inequality

(4.32) formally has to stay the way it is. However, symbolically we can, of course, write

gmonopole[X) lax = 12AikS(x)ldx = 2lAlk, (4.33)

(surf) , ,
which allows us to "informally" interpret inequality (4.32) as if gmonopo_e[X) of (4.25) provided a lower bound

in L1 for all the control sources g(x) defined by (4.16). Let us also note that "integration" with respect to x

in (4.33) that "removes" the 5-function itself and leaves only its magnitude 2klAI, is a continuous analogue

of multiplication by h on the right-hand side of formulae (4.29) or (4.30). Therefore, we conclude that the

continuous inequality (4.32) is a direct counterpart of the discrete inequality (4.29).
(surf) , , /- (lot)

Even though gmonopole[X) _ _1 (I_), we will still show that there are regular control sources g(x) C
(surf) , ,

L_°c)(R) that are arbitrarily close to gmonopole[X) in the weak sense. More precisely, we will construct a

sequence of regular auxiliary functions w_ (x), such that the corresponding g_ (x) obtained according to (4.16),
(surf) , ,

will converge to gmonopole[X) of (4.25) in the sense of distributions. This will allow us to claim that although
(surf) , ,

the minimal solution gmonopo_eiX) is singular, it is, in fact, "on the borderline" of the class of regular solutions.

In other words, it is a limiting point, in the sense of weak convergence, of the space of all g(x) defined by

formula (4.25). In additions, we will also show that the L1 norms Ilg_llconverge to the magnitude 2klA I of
(surf) , ,

the "surface" monopole gmonopole[X) of (4.25). This will allow us to formulate in the continuous case the

result similar to the minimality (4.30) but in the sense of "infimum" rather than "minimum."

Consider a regular function w_ = w_(x) that is defined on [0, X] and satisfies boundary conditions (4.17)

and (4.20) with u(x) = Ae _kx for x < 0. In addition, let us assume that not only for x > X, but also

in between some (small) e < X and X, the function w_(x) already coincides with a right-traveling wave:

w_(x) = w_(e)e ik(x _), e < x < X. In other words, we require that w_(0) = A, w_(0) = ikA, and wry(e) =

-ikw_(e). For the purpose of obtaining the aforementioned convergent sequence, we will subsequently let

e --+ +0. The control sources g_(x) are defined according to formula (4.16): g_(x) = -wP_'(x) - k2w_(x),

0 < x < e, and for x > e we have g_(x) = 0. If _ = _(x) is a test function on R, i.e., a compactly supported
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infinitely smooth function, see [22], then the corresponding functional, i.e., the distribution g¢ itself, can be

represented as follows:

=/o 9 (x) (x)dx=/[-w"(x) - =
0

g

w(e)_'(e) - w(0)_(0) - [_(_)w'(e) - v(0)_'(0)] +/[-_(x)_"(x) + k2w(_)_(_)]dx.
0

As w(x) G L_l°e)(R) and g)(x) is a test function, the integral on the right-hand side of the previous equality

vanishes as e --+ +0. Let us now additionally assume that the functions w_ = w_(x) are constructed so

that w_(e) ----+ w_(0) when e ---+ +0. In other words, we assume continuity at x = 0. Then, because of the

boundary condition (4.20) at x = e, we have wry(e) -----+-ikA as e -----++0. Altogether, we obtain

(9_,Y)) ---+ 2ikA_(O), as e ----+ +0. (4.34)

The limit (4.34) implies that in the sense of distributions

(surf) " " 2ikAS(x), as e ---+ +0. (4.35)g_(x) --+ 9monopole(X) --

Let now specify a particular form of w_(x):

-ikA
w_(x) = --x 2 + ikAx + A, x • [0, e]. (4.36)

e

For this function, we have w_(0) -- w_(e) -- A, wry(0) -- ikA, and wry(e) -- -ikA, and consequently, w_(x) of

(4.36) meets all the previous conditions. For the L1 norm of the corresponding control g_(x), we obtain:

IIg_lll = Iw:'(x) +k2w_(x)ldx = IAI k2 + -Tx 2 +Ux- dx.
0 0

As we always have 0 < x < e, the dominant term in the last integral for small e is _, and therefore:

119_111_ 2kldl, as e _ +0. (4.37)

Putting together the result of Corollary 4.2, as well as limits (4.35) and (4.37), we arrive at the following

THEOREM 4.3. Let a complex-valued function w = w(x) be defined on [0, X]. Let w(O) = A, where

A • C is a given constant; and w'(O) = ikw(O) and w'(X) = -ikw(X). Then, in the class of regular

control sources 9(x) defined by formula (4.16) for all such w(x), one can identify a sequence g_(x) that would
(surf) . .

converge in the sense of distributions to the point monopole gmonopole[X) defined by formula (4.25):

(surf) " ' 2ikAS(x), as e ---+ +0.gc(X) ----+ gmonopole[X) --

(surf) , ,

Besides, the magnitude of the point monopole gmonopole[X) of (_.25) provides the greatest lower" bound for L1

norms of all the control sources g(x) of (4.16):

inf Ilglll = 2klAI. (4.38)
_(_)

Clearly, estimate (4.38) can be interpreted as global L1 minimality of the "surface" control (4.25) among the

continuous one-dimensional control sources (4.16). It is a continuous version of the previously established

discrete result (4.30).
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5. Discussion. For the problem of active control of sound, we have systematically described time-

harmonic general solutions for the volume and surface control sources in the continuous and discrete formu-

lation of the problem. These control sources guarantee the identical cancellation on unwanted noise on a

predetermined region of interest. We have also proposed a criterion for optimization of the resulting control

sources. This criterion chooses the overall absolute acoustic source strength as the cost function for mini-

mization, and as such admits a clear physical interpretation. Mathematically, it translates into minimization

of complex-valued functions in the sense of Lt, which is a very challenging problem from the standpoint of

numerical implementation. We have still managed, though, to compute several two-dimensional numerical

solutions using the algorithm SeDuMi. All these solutions demonstrate a coherent behavior the mini-

mum is achieved on the surface of the protected region. In other words, the minimum is delivered by the

appropriate surface monopole controls. Therefore, the numerical evidence that we have received indicates

that surface monopoles may provide a global L 1 minimum for the control sources in the general setting. We

have been able to rigorously prove this result in the one-dimensional case for both continuous and discrete

formulation of the problem. Even though we have not yet been able to prove a similar result for a general

multi-dimensional framework, we still believe that it is true, because a combination of the two-dimensional

numerical evidence and a one-dimensional accurate proof cannot, in our opinion, be a mere coincidence.

Therefore, we put it forward below in the form of a conjecture. Let us remind, that according to (2.24) the

surface monopole controls are given by

where _(x) = w(x) -u + (x) as before, and w(x) is a solution to the exterior Dirichlet problem (2.21). Then,

we can formulate the following

CONJECTURE 5.1. Let a complex-valued function w = w(x) be defined on fh = I_n\f_, and let it be

sufficiently smooth so that the operator L of (1.1) can be applied to w(x) on its entire domain in the classical

sense, and the result Lw be locally absolutely integrable. Let, in addition, w(x) satisfy the interface conditions

(2.2), where u = u(x) is a given field to be controlled, and the appropriate Somme_feld radiation boundary

conditions at infinity, (1.2a) or (1.2b). Then, the greatest lower bound for the L_ norms of all the control

sources g(x) obtained with such auxiliary .functions w(x) using formula (2.1), is given by the L1 norm on F

of the magnitude of surface monopoles (5.1):

inf _ I9(x)ldx=frlu(x)lds. (5.2)

Alternatively, we can rewrite formula (5.2) as

inf Ilg(x)lll,al = IlUlll,r • (5.3)
_,(_)

Equality (5.3) is a multi-dimensional generalization of (4.38). Let us also notice that equality (4.13) that

was obtained on the basis of experimental observations in two space dimensions, can be considered a discrete

two-dimensional prototype of (5.3).

In the formulation of Conjecture 5.1, we did not include the results on the convergence of a sequence

of volumetric controls to the surface layer vS(F), see (5.1), and on the convergence of the corresponding L1
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norms, as we did in Theorem 4.3 for the one-dimensional case. We believe, though, that these results can

be easily formulated and justified in the multi-dimensional framework using an approach similar to the one

that we have used in the one-dimensional case. The key missing part, however, that does not yet allow us

to transform Conjecture 5.1 into a Theorem, is proving that surface monopoles provide a lower" bound for

the volumetric controls in the sense of L1, whereas showing that this is the greatest lower bound is more

straightforward. The analysis of this problem will be a subject of our future research. In this connection we

can only mention that at least in the two-dimensional case the geometry of the protected region f_ should

not be a limitation when constructing a general proof. If one can prove the result for a constant-width linear

strip with periodic boundary conditions on its sides, and with the interface F being a segment of the straight

line normal to the sides of the strip, then for any other shape the same result can likely be obtained with

the help of a conformal mapping.
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